These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2634051)

  • 1. Localization of riboflavin metabolism in the lens.
    Hirano H; Itho H; Ono S
    Int J Vitam Nutr Res; 1989; 59(4):421-2. PubMed ID: 2634051
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of ethanol on the riboflavin metabolism in the lens.
    Ono S; Hirano H
    Int J Vitam Nutr Res; 1987; 57(1):106. PubMed ID: 3583590
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of aging on the formation of ester forms of riboflavin in the rat lens.
    Ono S; Oikawa K; Hirano H; Obara Y
    Int J Vitam Nutr Res; 1986; 56(3):259-62. PubMed ID: 3781750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of phosphatic metabolites in the crystalline lens.
    Greiner JV; Kopp SJ; Glonek T
    Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):537-44. PubMed ID: 3980170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the riboflavin-binding capacity of the rat lens.
    Hirano H; Hamajima S; Niitsu Y; Oikawa K; Ono S
    Int J Vitam Nutr Res; 1983; 53(3):243-50. PubMed ID: 6629663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezable and non-freezable water content of cataractous human lenses.
    Bettelheim FA; Ali S; White O; Chylack LT
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboflavin status and photo-induced riboflavin binding to the proteins of the rat ocular lens.
    Salim-Hanna M; Valenzuela A; Silva E
    Int J Vitam Nutr Res; 1988; 58(1):61-5. PubMed ID: 3384586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid composition of the rat lens is independent of diet.
    Nealon JR; Blanksby SJ; Abbott SK; Hulbert AJ; Mitchell TW; Truscott RJ
    Exp Eye Res; 2008 Dec; 87(6):502-14. PubMed ID: 18796304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in calpain II mRNA in young rat lens during maturation and cataract formation.
    Ma H; Shih M; Throneberg DB; David LL; Shearer TR
    Exp Eye Res; 1997 Mar; 64(3):437-45. PubMed ID: 9196396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water self-diffusion in the calf lens.
    Haner RL; Schleich T; Morgan CF; Rydzewski JM
    Exp Eye Res; 1989 Sep; 49(3):371-6. PubMed ID: 2792234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxindolealanine in age-related human cataracts.
    Rousseva LA; Gaillard ER; Paik DC; Merriam JC; Ryzhov V; Garland DL; Dillon JP
    Exp Eye Res; 2007 Dec; 85(6):861-8. PubMed ID: 17935715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide levels in human and bovine lenses: a study on regional postmortem changes.
    Pau H; Deussen A
    Ophthalmic Res; 1990; 22(1):45-50. PubMed ID: 2342778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From E.M. microprobe analysis to NMRD studies of the lens.
    Clark JI; Beaulieu CF
    Lens Eye Toxic Res; 1989; 6(4):523-39. PubMed ID: 2562119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Posttranslational deamidation of crystalline lens proteins during animal aging].
    Krichevskaia AA; Lukash AI; Pushkina NV; Shepotinovskaia IV; Sherstnev KB
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1984; (7):23-8. PubMed ID: 6466744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific restriction of cholesterol from cortical lens gap junctional membrane in the U18666A cataract.
    Fleschner CR; Cenedella RJ
    Curr Eye Res; 1988 Oct; 7(10):1029-34. PubMed ID: 3229122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributional change of alpha-tocopherol in the rat lens with age.
    Nagata M; Kojima M; Murano H; Sasaki K; Obara Y; Matsuura K; Takashina H
    Ophthalmic Res; 1996; 28 Suppl 2():136-40. PubMed ID: 8883102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of riboflavin deficiency on the 32P turnover in the macromolecular phosphate compounds of the rat lens.
    Ono S; Hirano H; Ono M; Nagato K; Obara K
    Int J Vitam Nutr Res; 1977; 47(4):345-8. PubMed ID: 591204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dexamethasone phosphate on the formation of ester forms of riboflavin in the lens.
    Ono S; Shimizu S; Takahashi H; Hirano H
    Ophthalmic Res; 1986; 18(5):279-81. PubMed ID: 3808593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ultraviolet B irradiation on lenticular riboflavin metabolism and high-molecular-weight-protein aggregation.
    Hirano H; Obara Y; Katakura K; Ono S
    Ophthalmic Res; 1990; 22(3):183-6. PubMed ID: 2385434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-bound and free UV filters in cataract lenses. The concentration of UV filters is much lower than in normal lenses.
    Korlimbinis A; Aquilina JA; Truscott RJ
    Exp Eye Res; 2007 Aug; 85(2):219-25. PubMed ID: 17574241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.