BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26340535)

  • 1. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae.
    Donigan KA; Cerritelli SM; McDonald JP; Vaisman A; Crouch RJ; Woodgate R
    DNA Repair (Amst); 2015 Nov; 35():1-12. PubMed ID: 26340535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity.
    Donigan KA; McLenigan MP; Yang W; Goodman MF; Woodgate R
    J Biol Chem; 2014 Mar; 289(13):9136-45. PubMed ID: 24532793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta.
    McCulloch SD; Wood A; Garg P; Burgers PM; Kunkel TA
    Biochemistry; 2007 Jul; 46(30):8888-96. PubMed ID: 17608453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.
    Wiltrout ME; Walker GC
    Genetics; 2011 Jan; 187(1):21-35. PubMed ID: 20980236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli.
    Vaisman A; McDonald JP; Noll S; Huston D; Loeb G; Goodman MF; Woodgate R
    Mutat Res; 2014 Mar; 761():21-33. PubMed ID: 24495324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome instability due to ribonucleotide incorporation into DNA.
    Nick McElhinny SA; Kumar D; Clark AB; Watt DL; Watts BE; Lundström EB; Johansson E; Chabes A; Kunkel TA
    Nat Chem Biol; 2010 Oct; 6(10):774-81. PubMed ID: 20729855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V.
    McDonald JP; Vaisman A; Kuban W; Goodman MF; Woodgate R
    PLoS Genet; 2012; 8(11):e1003030. PubMed ID: 23144626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The in vivo characterization of translesion synthesis across UV-induced lesions in Saccharomyces cerevisiae: insights into Pol zeta- and Pol eta-dependent frameshift mutagenesis.
    Abdulovic AL; Jinks-Robertson S
    Genetics; 2006 Mar; 172(3):1487-98. PubMed ID: 16387871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η.
    Boldinova EO; Ignatov A; Kulbachinskiy A; Makarova AV
    Sci Rep; 2018 Jul; 8(1):10314. PubMed ID: 29985422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of RNase H enzymes in maintaining genome stability in Escherichia coli expressing a steric-gate mutant of pol V
    Walsh E; Henrikus SS; Vaisman A; Makiela-Dzbenska K; Armstrong TJ; Łazowski K; McDonald JP; Goodman MF; van Oijen AM; Jonczyk P; Fijalkowska IJ; Robinson A; Woodgate R
    DNA Repair (Amst); 2019 Dec; 84():102685. PubMed ID: 31543434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli UmuC active site mutants: effects on translesion DNA synthesis, mutagenesis and cell survival.
    Kuban W; Vaisman A; McDonald JP; Karata K; Yang W; Goodman MF; Woodgate R
    DNA Repair (Amst); 2012 Sep; 11(9):726-32. PubMed ID: 22784977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer.
    Gibbs PE; McDonald J; Woodgate R; Lawrence CW
    Genetics; 2005 Feb; 169(2):575-82. PubMed ID: 15520252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA polymerase η contributes to genome-wide lagging strand synthesis.
    Kreisel K; Engqvist MKM; Kalm J; Thompson LJ; Boström M; Navarrete C; McDonald JP; Larsson E; Woodgate R; Clausen AR
    Nucleic Acids Res; 2019 Mar; 47(5):2425-2435. PubMed ID: 30597049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase iota.
    Vaisman A; Frank EG; Iwai S; Ohashi E; Ohmori H; Hanaoka F; Woodgate R
    DNA Repair (Amst); 2003 Sep; 2(9):991-1006. PubMed ID: 12967656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae.
    Siebler HM; Lada AG; Baranovskiy AG; Tahirov TH; Pavlov YI
    DNA Repair (Amst); 2014 Dec; 24():138-149. PubMed ID: 24819597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-induced T-->C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase eta in vivo.
    Zhang H; Siede W
    Nucleic Acids Res; 2002 Mar; 30(5):1262-7. PubMed ID: 11861920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical properties of Saccharomyces cerevisiae DNA polymerase IV.
    Bebenek K; Garcia-Diaz M; Patishall SR; Kunkel TA
    J Biol Chem; 2005 May; 280(20):20051-8. PubMed ID: 15778218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and photochemical mechanisms that produce different UV-induced mutation spectra.
    Sugiyama T; Keinard B; Best G; Sanyal MR
    Mutat Res; 2021; 823():111762. PubMed ID: 34563793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bypass of DNA interstrand crosslinks by a Rev1-DNA polymerase ζ complex.
    Bezalel-Buch R; Cheun YK; Roy U; Schärer OD; Burgers PM
    Nucleic Acids Res; 2020 Sep; 48(15):8461-8473. PubMed ID: 32633759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of DNA polymerase eta in the UV mutation spectrum in human cells.
    Stary A; Kannouche P; Lehmann AR; Sarasin A
    J Biol Chem; 2003 May; 278(21):18767-75. PubMed ID: 12644471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.