BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26340547)

  • 41. Impact of origin and structure on the aggregation behavior of natural organic matter.
    Wei P; Xu F; Fu H; Qu X
    Chemosphere; 2020 Jun; 248():125990. PubMed ID: 32004888
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-kaolin synthetic water.
    Yang ZL; Gao BY; Yue QY; Wang Y
    J Hazard Mater; 2010 Jun; 178(1-3):596-603. PubMed ID: 20188465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D; Zhang W; Zhou D
    Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.
    Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media.
    Yang W; Wang Y; Shang J; Liu K; Sharma P; Liu J; Li B
    Chemosphere; 2017 Dec; 189():556-564. PubMed ID: 28963973
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review.
    Bhatnagar A; Sillanpää M
    Chemosphere; 2017 Jan; 166():497-510. PubMed ID: 27710885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal.
    Wang J; Li A; Xu L; Zhou Y
    J Hazard Mater; 2009 Sep; 169(1-3):794-800. PubMed ID: 19442438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC.
    Campinas M; Rosa MJ
    J Colloid Interface Sci; 2006 Jul; 299(2):520-9. PubMed ID: 16616183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations.
    Yang W; Shang J; Sharma P; Li B; Liu K; Flury M
    Sci Total Environ; 2019 Mar; 658():1306-1315. PubMed ID: 30677992
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.
    Pramanik BK; Pramanik SK; Suja F
    Environ Technol; 2015; 36(20):2610-7. PubMed ID: 25860623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties.
    Lin D; Li T; Yang K; Wu F
    J Hazard Mater; 2012 Nov; 241-242():404-10. PubMed ID: 23069335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification.
    Dias BO; Silva CA; Higashikawa FS; Roig A; Sánchez-Monedero MA
    Bioresour Technol; 2010 Feb; 101(4):1239-46. PubMed ID: 19796932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization.
    Kumar S; Loganathan VA; Gupta RB; Barnett MO
    J Environ Manage; 2011 Oct; 92(10):2504-12. PubMed ID: 21665352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of natural organic matter adsorption in granular activated carbon adsorbers.
    Velten S; Knappe DR; Traber J; Kaiser HP; von Gunten U; Boller M; Meylan S
    Water Res; 2011 Jul; 45(13):3951-9. PubMed ID: 21605887
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Mechanism of Cr( VI) removal from aqueous solution using biochar promoted by humic acid].
    Ding WC; Tian XM; Wang DY; Zeng XL; Xu Q; Chen JK; Ai XY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3847-53. PubMed ID: 23323415
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Abatement of humic acid from aqueous solution using a carbonaceous conjugated microporous polymer derived from waste polystyrene.
    Chaukura N; Moyo W; Mamba BB; Nkambule TI
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3291-3300. PubMed ID: 29147989
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal.
    Yang F; Du Q; Sui L; Cheng K
    Bioresour Technol; 2021 May; 328():124825. PubMed ID: 33609885
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Natural organic matter fouling behaviors on superwetting nanofiltration membranes.
    Shan L; Fan H; Guo H; Ji S; Zhang G
    Water Res; 2016 Apr; 93():121-132. PubMed ID: 26900973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insight into changes during coagulation in NOM reactivity for trihalomethanes and haloacetic acids formation.
    Tubić A; Agbaba J; Dalmacija B; Molnar J; Maletić S; Watson M; Perović SU
    J Environ Manage; 2013 Mar; 118():153-60. PubMed ID: 23428464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.