These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Switch-peptides: design and characterization of controllable super-amyloid-forming host-guest peptides as tools for identifying anti-amyloid agents. Camus MS; Dos Santos S; Chandravarkar A; Mandal B; Schmid AW; Tuchscherer G; Mutter M; Lashuel HA Chembiochem; 2008 Sep; 9(13):2104-12. PubMed ID: 18683159 [TBL] [Abstract][Full Text] [Related]
8. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Matthes D; Gapsys V; Brennecke JT; de Groot BL Sci Rep; 2016 Sep; 6():33156. PubMed ID: 27616019 [TBL] [Abstract][Full Text] [Related]
9. Macromolecular crowding favors the fibrillization of β2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly. Luo XD; Kong FL; Dang HB; Chen J; Liang Y Biochim Biophys Acta; 2016 Nov; 1864(11):1609-19. PubMed ID: 27481166 [TBL] [Abstract][Full Text] [Related]
10. Effect of oxidation and mutation on the conformational dynamics and fibril assembly of amyloidogenic peptides derived from apolipoprotein C-II. Legge FS; Binger KJ; Griffin MD; Howlett GJ; Scanlon D; Treutlein H; Yarovsky I J Phys Chem B; 2009 Oct; 113(42):14006-14. PubMed ID: 19780547 [TBL] [Abstract][Full Text] [Related]
11. The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent. Wu C; Lei H; Duan Y Biophys J; 2005 Apr; 88(4):2897-906. PubMed ID: 15653723 [TBL] [Abstract][Full Text] [Related]
12. Diversity of kinetic pathways in amyloid fibril formation. Bellesia G; Shea JE J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093 [TBL] [Abstract][Full Text] [Related]
13. Atomistic theory of amyloid fibril nucleation. Cabriolu R; Kashchiev D; Auer S J Chem Phys; 2010 Dec; 133(22):225101. PubMed ID: 21171698 [TBL] [Abstract][Full Text] [Related]
14. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure. Lei H; Wu C; Wang Z; Duan Y J Mol Biol; 2006 Mar; 356(4):1049-63. PubMed ID: 16403526 [TBL] [Abstract][Full Text] [Related]
16. Sequence dependent aggregation of peptides and fibril formation. Hung NB; Le DM; Hoang TX J Chem Phys; 2017 Sep; 147(10):105102. PubMed ID: 28915764 [TBL] [Abstract][Full Text] [Related]
17. Assembly of amyloid β peptides in the presence of fibril seeds: one-pot coarse-grained molecular dynamics simulations. Xu L; Chen Y; Wang X J Phys Chem B; 2014 Aug; 118(31):9238-46. PubMed ID: 25050788 [TBL] [Abstract][Full Text] [Related]
18. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet. Ohnishi S; Koide A; Koide S J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522 [TBL] [Abstract][Full Text] [Related]
19. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067 [TBL] [Abstract][Full Text] [Related]
20. Kinetic pathways to peptide aggregation on surfaces: the effects of β-sheet propensity and surface attraction. Morriss-Andrews A; Shea JE J Chem Phys; 2012 Feb; 136(6):065103. PubMed ID: 22360223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]