These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 26340673)
21. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen. Buron-Moles G; Wisniewski M; Viñas I; Teixidó N; Usall J; Droby S; Torres R J Proteomics; 2015 Jan; 114():136-51. PubMed ID: 25464364 [TBL] [Abstract][Full Text] [Related]
22. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. He L; Liu Y; Mustapha A; Lin M Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731 [TBL] [Abstract][Full Text] [Related]
23. Multidrug resistance of Penicillium expansum to fungicides: whole transcriptome analysis of MDR strains reveals overexpression of efflux transporter genes. Samaras Α; Ntasiou P; Myresiotis C; Karaoglanidis G Int J Food Microbiol; 2020 Dec; 335():108896. PubMed ID: 33070085 [TBL] [Abstract][Full Text] [Related]
24. Double-bottom antimicrobial packaging for apple shelf-life extension. da Rocha Neto AC; Beaudry R; Maraschin M; Di Piero RM; Almenar E Food Chem; 2019 May; 279():379-388. PubMed ID: 30611504 [TBL] [Abstract][Full Text] [Related]
25. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Sardella D; Gatt R; Valdramidis VP Food Res Int; 2017 Nov; 101():274-279. PubMed ID: 28941694 [TBL] [Abstract][Full Text] [Related]
26. Plasma membrane damage contributes to antifungal activity of silicon against Penicillium digitatum. Liu J; Zong Y; Qin G; Li B; Tian S Curr Microbiol; 2010 Oct; 61(4):274-9. PubMed ID: 20195609 [TBL] [Abstract][Full Text] [Related]
27. Efficacy of sanitizing treatments against Penicillium expansum inoculated on six varieties of apples. Salomão BC; Aragão GM; Churey JJ; Worobo RW J Food Prot; 2008 Mar; 71(3):643-7. PubMed ID: 18389716 [TBL] [Abstract][Full Text] [Related]
28. Comparison of the effects of three types of aminobutyric acids on the control of Penicillium expansum infection in pear fruit. Fu D; Sun Y; Yu C; Zheng X; Yu T; Lu H J Sci Food Agric; 2017 Mar; 97(5):1497-1501. PubMed ID: 27392194 [TBL] [Abstract][Full Text] [Related]
29. Germination and adhesion of fungal conidia on polycarbonate membranes and on apple fruit exposed to mycoactive acetate esters. Filonow AB Can J Microbiol; 2003 Feb; 49(2):130-8. PubMed ID: 12718401 [TBL] [Abstract][Full Text] [Related]
30. Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases. Agirman B; Erten H Yeast; 2020 Sep; 37(9-10):437-448. PubMed ID: 32452099 [TBL] [Abstract][Full Text] [Related]
31. Thiabendazole resistance and mutations in the beta-tubulin gene of Penicillium expansum strains isolated from apples and pears with blue mold decay. Cabañas R; Castellá G; Abarca ML; Bragulat MR; Cabañes FJ FEMS Microbiol Lett; 2009 Aug; 297(2):189-95. PubMed ID: 19538510 [TBL] [Abstract][Full Text] [Related]
32. Control of blue mold (Penicillium expansum) by fludioxonil in apples (cv Empire) under controlled atmosphere and cold storage conditions. Errampalli D; Northover J; Skog L; Brubacher NR; Collucci CA Pest Manag Sci; 2005 Jun; 61(6):591-6. PubMed ID: 15662721 [TBL] [Abstract][Full Text] [Related]
33. Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum. Vilanova L; Viñas I; Torres R; Usall J; Buron-Moles G; Teixidó N Int J Food Microbiol; 2014 May; 178():39-49. PubMed ID: 24667317 [TBL] [Abstract][Full Text] [Related]
34. A comparison of the inhibitory activities of Lactobacillus and Bifidobacterium against Penicillium expansum and an analysis of potential antifungal metabolites. Qiao N; Yu L; Zhang C; Wei C; Zhao J; Zhang H; Tian F; Zhai Q; Chen W FEMS Microbiol Lett; 2020 Sep; 367(18):. PubMed ID: 32845333 [TBL] [Abstract][Full Text] [Related]
35. Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii. Yu T; Chen J; Lu H; Zheng X Phytopathology; 2009 Mar; 99(3):258-64. PubMed ID: 19203278 [TBL] [Abstract][Full Text] [Related]
36. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea. Olmedo GM; Cerioni L; González MM; Cabrerizo FM; Rapisarda VA; Volentini SI Food Microbiol; 2017 Apr; 62():9-14. PubMed ID: 27889171 [TBL] [Abstract][Full Text] [Related]
37. The quorum-sensing molecule 2-phenylethanol impaired conidial germination, hyphal membrane integrity and growth of Penicillium expansum and Penicillium nordicum. Huang C; Qian Y; Viana T; Siegumfeldt H; Arneborg N; Larsen N; Jespersen L J Appl Microbiol; 2020 Aug; 129(2):278-286. PubMed ID: 32097516 [TBL] [Abstract][Full Text] [Related]
38. Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples. Badosa E; Ferré R; Francés J; Bardají E; Feliu L; Planas M; Montesinos E Appl Environ Microbiol; 2009 Sep; 75(17):5563-9. PubMed ID: 19617390 [TBL] [Abstract][Full Text] [Related]
39. First Report of Penicillium expansum Isolates Resistant to Pyrimethanil from Stored Apple Fruit in Pennsylvania. Yan HJ; Gaskins VL; Vico I; Luo YG; Jurick WM Plant Dis; 2014 Jul; 98(7):1004. PubMed ID: 30708917 [TBL] [Abstract][Full Text] [Related]
40. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. Banani H; Spadaro D; Zhang D; Matic S; Garibaldi A; Gullino ML Int J Food Microbiol; 2014 Jul; 182-183():1-8. PubMed ID: 24854386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]