These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26340681)

  • 1. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.
    Ortiz-Gutiérrez E; García-Cruz K; Azpeitia E; Castillo A; Sánchez Mde L; Álvarez-Buylla ER
    PLoS Comput Biol; 2015 Sep; 11(9):e1004486. PubMed ID: 26340681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulatory network models for floral organ determination.
    Azpeitia E; Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    Methods Mol Biol; 2014; 1110():441-69. PubMed ID: 24395275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a gene regulatory network of the induced systemic resistance defense response in Arabidopsis using boolean networks.
    Timmermann T; González B; Ruz GA
    BMC Bioinformatics; 2020 Apr; 21(1):142. PubMed ID: 32293239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae.
    Haliki E; Alpagut Keskin N; Masalci O
    J Biol Phys; 2019 Sep; 45(3):235-251. PubMed ID: 31175490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates.
    Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2015 May; 9():20. PubMed ID: 25967891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche.
    Azpeitia E; Benítez M; Vega I; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2010 Oct; 4():134. PubMed ID: 20920363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana.
    Wils CR; Kaufmann K
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):95-105. PubMed ID: 27487457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An information theoretic approach to constructing robust Boolean gene regulatory networks.
    Vasić B; Ravanmehr V; Krishnan AR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):52-65. PubMed ID: 21464507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process.
    Sánchez-Corrales YE; Alvarez-Buylla ER; Mendoza L
    J Theor Biol; 2010 Jun; 264(3):971-83. PubMed ID: 20303988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis.
    Mendoza L; Alvarez-Buylla ER
    J Theor Biol; 1998 Jul; 193(2):307-19. PubMed ID: 9714934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.
    Varala K; Marshall-Colón A; Cirrone J; Brooks MD; Pasquino AV; Léran S; Mittal S; Rock TM; Edwards MB; Kim GJ; Ruffel S; McCombie WR; Shasha D; Coruzzi GM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6494-6499. PubMed ID: 29769331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape.
    Alvarez-Buylla ER; Chaos A; Aldana M; Benítez M; Cortes-Poza Y; Espinosa-Soto C; Hartasánchez DA; Lotto RB; Malkin D; Escalera Santos GJ; Padilla-Longoria P
    PLoS One; 2008; 3(11):e3626. PubMed ID: 18978941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative stability of network states in Boolean network models of gene regulation in development.
    Zhou JX; Samal A; d'Hérouël AF; Price ND; Huang S
    Biosystems; 2016; 142-143():15-24. PubMed ID: 26965665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.
    Velderraín JD; Martínez-García JC; Álvarez-Buylla ER
    Methods Mol Biol; 2017; 1629():297-315. PubMed ID: 28623593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boolean factor graph model for biological systems: the yeast cell-cycle network.
    Kotiang S; Eslami A
    BMC Bioinformatics; 2021 Sep; 22(1):442. PubMed ID: 34535069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing gene regulatory network inference through data integration with markov random fields.
    Banf M; Rhee SY
    Sci Rep; 2017 Feb; 7():41174. PubMed ID: 28145456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.
    Wang BH; Lim JW; Lim JS
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation.
    Street NR; Jansson S; Hvidsten TR
    BMC Plant Biol; 2011 Jan; 11():13. PubMed ID: 21232107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive functions in boolean models of gene regulatory network modules.
    Darabos C; Di Cunto F; Tomassini M; Moore JH; Provero P; Giacobini M
    PLoS One; 2011; 6(11):e25110. PubMed ID: 22132067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.