These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26340716)

  • 21. Quantitative bioanalysis of quinine by atmospheric pressure-matrix assisted laser desorption/ionization mass spectrometry combined with dynamic drop-to-drop solvent microextraction.
    Shrivas K; Wu HF
    Anal Chim Acta; 2007 Dec; 605(2):153-8. PubMed ID: 18036378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic nebulization extraction coupled with headspace single-drop microextraction of volatile and semivolatile compounds from the seed of Cuminum cyminum L.
    Zhang H; Shi Y; Wei S; Wang Y; Zhang H
    Talanta; 2011 Aug; 85(2):1081-7. PubMed ID: 21726742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microextraction techniques combined with capillary electrophoresis in bioanalysis.
    Kohler I; Schappler J; Rudaz S
    Anal Bioanal Chem; 2013 Jan; 405(1):125-41. PubMed ID: 22965532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-line coupling headspace liquid-phase microextraction with capillary electrophoresis.
    Xie HY; He YZ; Gan WE; Yu CZ; Han F; Ling DS
    J Chromatogr A; 2010 Feb; 1217(8):1203-7. PubMed ID: 20034631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of sample volume on quantitative analysis by solid-phase microextraction. Part 1. Theoretical considerations.
    Górecki T; Pawliszyn J
    Analyst; 1997 Oct; 122(10):1079-86. PubMed ID: 9463959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple headspace single-drop microextraction coupled with gas chromatography for direct determination of residual solvents in solid drug product.
    Yu Y; Chen B; Shen C; Cai Y; Xie M; Zhou W; Chen Y; Li Y; Duan G
    J Chromatogr A; 2010 Aug; 1217(32):5158-64. PubMed ID: 20599202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic liquids in bioanalysis.
    Kailasa SK; Rawat KA; Wu HF
    Bioanalysis; 2015; 7(17):2251-64. PubMed ID: 26378935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extraction of organic compounds with room temperature ionic liquids.
    Poole CF; Poole SK
    J Chromatogr A; 2010 Apr; 1217(16):2268-86. PubMed ID: 19766228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Rapid method of determination of urinary estrogens in women in the 2d trimester of pregnancy with the aid of a semi-automatic extractor].
    Orlova VG; Liubimova AI; Karacharova LF
    Lab Delo; 1978; (1):31-5. PubMed ID: 75294
    [No Abstract]   [Full Text] [Related]  

  • 31. Liquid-liquid-liquid microextraction followed by HPLC with UV detection for quantitation of ephedrine in urine.
    Bagheri H; Khalilian F; Ahangar LE
    J Sep Sci; 2008 Oct; 31(18):3212-7. PubMed ID: 18773417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent trends in analytical methods and separation techniques for drugs of abuse in hair.
    Baciu T; Borrull F; Aguilar C; Calull M
    Anal Chim Acta; 2015 Jan; 856():1-26. PubMed ID: 25542354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Headspace water-based liquid-phase microextraction.
    Zhang J; Su T; Lee HK
    Anal Chem; 2005 Apr; 77(7):1988-92. PubMed ID: 15801728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-controlled headspace liquid-phase microextraction device using volatile solvents.
    Chen S; Peng H; Wu D; Guan Y
    J Chromatogr A; 2010 Sep; 1217(38):5883-9. PubMed ID: 20708193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent-free microextraction techniques in gas chromatography.
    Laaks J; Jochmann MA; Schmidt TC
    Anal Bioanal Chem; 2012 Jan; 402(2):565-71. PubMed ID: 22057686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in salt-assisted LLE for analyzing biological samples.
    Valente IM; Rodrigues JA
    Bioanalysis; 2015; 7(17):2187-93. PubMed ID: 26340712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review.
    Yamini Y; Seidi S; Rezazadeh M
    Anal Chim Acta; 2014 Mar; 814():1-22. PubMed ID: 24528839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of biological macromolecules and particles by field-flow fractionation.
    Giddings JC; Myers MN; Caldwell KD; Fisher SR
    Methods Biochem Anal; 1980; 26():79-136. PubMed ID: 7392963
    [No Abstract]   [Full Text] [Related]  

  • 39. Ionic liquids in sample preparation.
    Liu R; Liu JF; Yin YG; Hu XL; Jiang GB
    Anal Bioanal Chem; 2009 Feb; 393(3):871-83. PubMed ID: 18958452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytical applications of nanoparticles in MALDI-MS for bioanalysis.
    Kailasa SK; D'souza S; Wu HF
    Bioanalysis; 2015; 7(17):2265-76. PubMed ID: 26354596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.