These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 26340991)
1. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Fu Y; Li C; Lu S; Zhou W; Tang F; Xie XS; Huang Y Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11923-8. PubMed ID: 26340991 [TBL] [Abstract][Full Text] [Related]
2. Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates. Leung K; Klaus A; Lin BK; Laks E; Biele J; Lai D; Bashashati A; Huang YF; Aniba R; Moksa M; Steif A; Mes-Masson AM; Hirst M; Shah SP; Aparicio S; Hansen CL Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8484-9. PubMed ID: 27412862 [TBL] [Abstract][Full Text] [Related]
3. The Performance of Whole Genome Amplification Methods and Next-Generation Sequencing for Pre-Implantation Genetic Diagnosis of Chromosomal Abnormalities. Li N; Wang L; Wang H; Ma M; Wang X; Li Y; Zhang W; Zhang J; Cram DS; Yao Y J Genet Genomics; 2015 Apr; 42(4):151-9. PubMed ID: 25953353 [TBL] [Abstract][Full Text] [Related]
4. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification. Nishikawa Y; Hosokawa M; Maruyama T; Yamagishi K; Mori T; Takeyama H PLoS One; 2015; 10(9):e0138733. PubMed ID: 26389587 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic whole genome amplification device for single cell sequencing. Yu Z; Lu S; Huang Y Anal Chem; 2014 Oct; 86(19):9386-90. PubMed ID: 25233049 [TBL] [Abstract][Full Text] [Related]
6. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in single-cell sequencing. Chen M; Song P; Zou D; Hu X; Zhao S; Gao S; Ling F PLoS One; 2014; 9(12):e114520. PubMed ID: 25485707 [TBL] [Abstract][Full Text] [Related]
7. High-throughput single-cell whole-genome amplification through centrifugal emulsification and eMDA. Fu Y; Zhang F; Zhang X; Yin J; Du M; Jiang M; Liu L; Li J; Huang Y; Wang J Commun Biol; 2019; 2():147. PubMed ID: 31044172 [TBL] [Abstract][Full Text] [Related]
8. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing. Hou Y; Wu K; Shi X; Li F; Song L; Wu H; Dean M; Li G; Tsang S; Jiang R; Zhang X; Li B; Liu G; Bedekar N; Lu N; Xie G; Liang H; Chang L; Wang T; Chen J; Li Y; Zhang X; Yang H; Xu X; Wang L; Wang J Gigascience; 2015; 4():37. PubMed ID: 26251698 [TBL] [Abstract][Full Text] [Related]
9. A new workflow for whole-genome sequencing of single human cells. Binder V; Bartenhagen C; Okpanyi V; Gombert M; Moehlendick B; Behrens B; Klein HU; Rieder H; Ida Krell PF; Dugas M; Stoecklein NH; Borkhardt A Hum Mutat; 2014 Oct; 35(10):1260-70. PubMed ID: 25066732 [TBL] [Abstract][Full Text] [Related]
10. Comparison of whole genome amplification techniques for human single cell exome sequencing. Borgström E; Paterlini M; Mold JE; Frisen J; Lundeberg J PLoS One; 2017; 12(2):e0171566. PubMed ID: 28207771 [TBL] [Abstract][Full Text] [Related]
11. Massively parallel sequencing of micro-manipulated cells targeting a comprehensive panel of disease-causing genes: A comparative evaluation of upstream whole-genome amplification methods. Deleye L; Gansemans Y; De Coninck D; Van Nieuwerburgh F; Deforce D PLoS One; 2018; 13(4):e0196334. PubMed ID: 29698522 [TBL] [Abstract][Full Text] [Related]
12. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Hosokawa M; Nishikawa Y; Kogawa M; Takeyama H Sci Rep; 2017 Jul; 7(1):5199. PubMed ID: 28701744 [TBL] [Abstract][Full Text] [Related]
13. Precision oncology using a limited number of cells: optimization of whole genome amplification products for sequencing applications. Sho S; Court CM; Winograd P; Lee S; Hou S; Graeber TG; Tseng HR; Tomlinson JS BMC Cancer; 2017 Jul; 17(1):457. PubMed ID: 28666423 [TBL] [Abstract][Full Text] [Related]
14. Performance of four modern whole genome amplification methods for copy number variant detection in single cells. Deleye L; Tilleman L; Vander Plaetsen AS; Cornelis S; Deforce D; Van Nieuwerburgh F Sci Rep; 2017 Jun; 7(1):3422. PubMed ID: 28611458 [TBL] [Abstract][Full Text] [Related]
15. Whole genome amplification with SurePlex results in better copy number alteration detection using sequencing data compared to the MALBAC method. Deleye L; De Coninck D; Christodoulou C; Sante T; Dheedene A; Heindryckx B; Van den Abbeel E; De Sutter P; Menten B; Deforce D; Van Nieuwerburgh F Sci Rep; 2015 Jun; 5():11711. PubMed ID: 26122179 [TBL] [Abstract][Full Text] [Related]
16. Performance of a TthPrimPol-based whole genome amplification kit for copy number alteration detection using massively parallel sequencing. Deleye L; De Coninck D; Dheedene A; De Sutter P; Menten B; Deforce D; Van Nieuwerburgh F Sci Rep; 2016 Aug; 6():31825. PubMed ID: 27546482 [TBL] [Abstract][Full Text] [Related]
17. A quantitative comparison of single-cell whole genome amplification methods. de Bourcy CF; De Vlaminck I; Kanbar JN; Wang J; Gawad C; Quake SR PLoS One; 2014; 9(8):e105585. PubMed ID: 25136831 [TBL] [Abstract][Full Text] [Related]
18. Deterministic Whole-Genome Amplification of Single Cells. Czyż ZT; Klein CA Methods Mol Biol; 2015; 1347():69-86. PubMed ID: 26374310 [TBL] [Abstract][Full Text] [Related]
19. Characterization of whole genome amplified (WGA) DNA for use in genotyping assay development. Han T; Chang CW; Kwekel JC; Chen Y; Ge Y; Martinez-Murillo F; Roscoe D; Težak Z; Philip R; Bijwaard K; Fuscoe JC BMC Genomics; 2012 Jun; 13():217. PubMed ID: 22655855 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Zong C; Lu S; Chapman AR; Xie XS Science; 2012 Dec; 338(6114):1622-6. PubMed ID: 23258894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]