BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1153 related articles for article (PubMed ID: 26341339)

  • 1. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.
    Lipińska A; Wyszkowska J; Kucharski J
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the Phytotoxkit microbiotest and chemical variables for toxicity evaluation of sediments.
    Czerniawska-Kusza I; Ciesielczuk T; Kusza G; Cichoń A
    Environ Toxicol; 2006 Aug; 21(4):367-72. PubMed ID: 16841321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests.
    Manzo S; De Nicola F; De Luca Picione F; Maisto G; Alfani A
    Chemosphere; 2008 May; 71(10):1937-44. PubMed ID: 18336862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species.
    Libralato G; Costa Devoti A; Zanella M; Sabbioni E; Mičetić I; Manodori L; Pigozzo A; Manenti S; Groppi F; Volpi Ghirardini A
    Ecotoxicol Environ Saf; 2016 Jan; 123():81-8. PubMed ID: 26232851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential for Phytoremediation of PCDD/PCDF-Contaminated Sludge and Sediments Using Cucurbitaceae Plants: A Pilot Study.
    Urbaniak M; Wyrwicka A; Zieliński M; Mankiewicz-Boczek J
    Bull Environ Contam Toxicol; 2016 Sep; 97(3):401-6. PubMed ID: 27365136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays.
    Visioli G; Conti FD; Menta C; Bandiera M; Malcevschi A; Jones DL; Vamerali T
    Environ Monit Assess; 2016 Mar; 188(3):166. PubMed ID: 26884353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme.
    Shen G; Lu Y; Zhou Q; Hong J
    Chemosphere; 2005 Dec; 61(8):1175-82. PubMed ID: 16263387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of wild plant species to polycyclic aromatic hydrocarbons in soil.
    Hong SH; Kang BH; Kang MH; Chung JW; Jun WJ; Chung JI; Kim MC; Shim SI
    J Environ Monit; 2009 Sep; 11(9):1664-72. PubMed ID: 19724837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons.
    Steliga T; Kluk D
    Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical properties and toxicity of soils contaminated by mining activity.
    Agnieszka B; Tomasz C; Jerzy W
    Ecotoxicology; 2014 Sep; 23(7):1234-44. PubMed ID: 24903806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparing Their Actions with Biostimulation Treatment.
    Brzeszcz J; Kapusta P; Steliga T; Turkiewicz A
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32033085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments.
    Baran A; Tarnawski M
    Ecotoxicol Environ Saf; 2013 Dec; 98():19-27. PubMed ID: 24210349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid microbiotest for determination of soil toxicity to higher plants.
    Persoone G
    Commun Agric Appl Biol Sci; 2007; 72(2):97. PubMed ID: 18399429
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidoreductase activity of Sorghum root exudates in a phenanthrene-contaminated environment.
    Muratova A; Pozdnyakova N; Golubev S; Wittenmayer L; Makarov O; Merbach W; Turkovskaya O
    Chemosphere; 2009 Feb; 74(8):1031-6. PubMed ID: 19101015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the Suitability of
    Steliga T; Kluk D
    Toxics; 2021 Jun; 9(7):. PubMed ID: 34202316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking pollution of roadside soils and ecotoxicological responses of five higher plants.
    Nikolaeva O; Karpukhin M; Streletskii R; Rozanova M; Chistova O; Panina N
    Ecotoxicol Environ Saf; 2021 Jan; 208():111586. PubMed ID: 33396109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant-assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME).
    Hynes RK; Farrell RE; Germida JJ
    Int J Phytoremediation; 2004; 6(3):253-68. PubMed ID: 15554477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the potential phytotoxicity of digestate from winery wastes.
    Da Ros C; Libralato G; Ghirardini AV; Radaelli M; Cavinato C
    Ecotoxicol Environ Saf; 2018 Apr; 150():26-33. PubMed ID: 29268111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the phytotoxicity of seaport sediments in the framework of a quarry-deposit scenario: germination tests of sediments aged artificially by column leaching.
    Bedell JP; Bazin C; Sarrazin B; Perrodin Y
    Arch Environ Contam Toxicol; 2013 Jul; 65(1):1-13. PubMed ID: 23456254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil.
    Stefaniuk M; Oleszczuk P
    Environ Pollut; 2016 Nov; 218():242-251. PubMed ID: 27461750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.