BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26341482)

  • 21. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale.
    Mapari SA; Meyer AS; Thrane U; Frisvad JC
    Microb Cell Fact; 2009 Apr; 8():24. PubMed ID: 19397825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications.
    Hernández VA; Machuca Á; Saavedra I; Chavez D; Astuya A; Barriga C
    World J Microbiol Biotechnol; 2019 Oct; 35(10):160. PubMed ID: 31606850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium.
    Christiansen JV; Isbrandt T; Petersen C; Sondergaard TE; Nielsen MR; Pedersen TB; Sørensen JL; Larsen TO; Frisvad JC
    Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8157-8193. PubMed ID: 34625822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computerized screening for novel producers of Monascus-like food pigments in Penicillium species.
    Mapari SA; Hansen ME; Meyer AS; Thrane U
    J Agric Food Chem; 2008 Nov; 56(21):9981-9. PubMed ID: 18841978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copper deficiency in potato dextrose agar causes reduced pigmentation in cultures of various fungi.
    Griffith GW; Easton GL; Detheridge A; Roderick K; Edwards A; Worgan HJ; Nicholson J; Perkins WT
    FEMS Microbiol Lett; 2007 Nov; 276(2):165-71. PubMed ID: 17956422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-Scale Production of Bioactive Terrein by
    Asfour HZ; Awan ZA; Bagalagel AA; Elfaky MA; Abdelhameed RFA; Elhady SS
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31547354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Melanin pigments of fungi under extreme environmental conditions (review)].
    Gessler NN; Egorova AS; Belozerskaia TA
    Prikl Biokhim Mikrobiol; 2014; 50(2):125-34. PubMed ID: 25272728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungal polyketide azaphilone pigments as future natural food colorants?
    Mapari SA; Thrane U; Meyer AS
    Trends Biotechnol; 2010 Jun; 28(6):300-7. PubMed ID: 20452692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pigment produced from Arcopilus aureus isolated from grapevines: Promising natural yellow colorants for the food industry.
    Amaral De Faria Silva L; Ferreira Alves M; Florêncio Filho D; Aparecida Takahashi J; Soares Santos L; Almeida De Carvalho S
    Food Chem; 2022 Sep; 389():132967. PubMed ID: 35561512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photostability of natural orange-red and yellow fungal pigments in liquid food model systems.
    Mapari SA; Meyer AS; Thrane U
    J Agric Food Chem; 2009 Jul; 57(14):6253-61. PubMed ID: 19534525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylenetetrahydrofolate reductase activity is involved in the plasma membrane redox system required for pigment biosynthesis in filamentous fungi.
    Frandsen RJ; Albertsen KS; Stougaard P; Sørensen JL; Nielsen KF; Olsson S; Giese H
    Eukaryot Cell; 2010 Aug; 9(8):1225-35. PubMed ID: 20543064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants.
    Mapari SA; Nielsen KF; Larsen TO; Frisvad JC; Meyer AS; Thrane U
    Curr Opin Biotechnol; 2005 Apr; 16(2):231-8. PubMed ID: 15831392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose inhibition and inheritance of pigment-producing ability in Phytophthora.
    Timmer LW; Erwin DC; McCormick WH
    Mycologia; 1970; 62(5):967-77. PubMed ID: 5486006
    [No Abstract]   [Full Text] [Related]  

  • 34. Solamargine production by a fungal endophyte of Solanum nigrum.
    El-Hawary SS; Mohammed R; AbouZid SF; Bakeer W; Ebel R; Sayed AM; Rateb ME
    J Appl Microbiol; 2016 Apr; 120(4):900-11. PubMed ID: 26811095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Fungal anthraquinones (review)].
    Gessler NN; Egorova AS; Belozerskaia TA
    Prikl Biokhim Mikrobiol; 2013; 49(2):109-23. PubMed ID: 23795468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulation of astaxanthin formation in the yeast Xanthophyllomyces dendrorhous by the fungus Epicoccum nigrum.
    Echavarri-Erasun C; Johnson EA
    FEMS Yeast Res; 2004 Jan; 4(4-5):511-9. PubMed ID: 14734032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense.
    Alvarenga N; Birolli WG; Seleghim MH; Porto AL
    Chemosphere; 2014 Dec; 117():47-52. PubMed ID: 24955826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the Production of the Fungal Pigment Aurofusarin in
    Westphal KR; Wollenberg RD; Herbst FA; Sørensen JL; Sondergaard TE; Wimmer R
    Toxins (Basel); 2018 Nov; 10(11):. PubMed ID: 30469367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi.
    Frisvad JC; Andersen B; Thrane U
    Mycol Res; 2008 Feb; 112(Pt 2):231-40. PubMed ID: 18319145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulating Production of Pigment-Type Secondary Metabolites from Soft Rotting Wood Decay Fungi ("Spalting" Fungi).
    Van Court RC; Robinson SC
    Adv Biochem Eng Biotechnol; 2019; 169():109-124. PubMed ID: 30891625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.