These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 26341531)
1. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Ben Mansour K; Rezzoug N; Gorce P Gait Posture; 2015 Oct; 42(4):409-14. PubMed ID: 26341531 [TBL] [Abstract][Full Text] [Related]
2. Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults. Misu S; Asai T; Ono R; Sawa R; Tsutsumimoto K; Ando H; Doi T Gait Posture; 2017 Sep; 57():295-298. PubMed ID: 28686998 [TBL] [Abstract][Full Text] [Related]
3. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population. De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K Clin Biomech (Bristol); 2018 May; 54():22-27. PubMed ID: 29533844 [TBL] [Abstract][Full Text] [Related]
4. Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Yang S; Zhang JT; Novak AC; Brouwer B; Li Q Gait Posture; 2013 Mar; 37(3):354-8. PubMed ID: 23000235 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137 [TBL] [Abstract][Full Text] [Related]
6. Automated gait event detection for a variety of locomotion tasks using a novel gyroscope-based algorithm. Fadillioglu C; Stetter BJ; Ringhof S; Krafft FC; Sell S; Stein T Gait Posture; 2020 Sep; 81():102-108. PubMed ID: 32707401 [TBL] [Abstract][Full Text] [Related]
7. Ambulatory running speed estimation using an inertial sensor. Yang S; Mohr C; Li Q Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of three methods in gait event detection during overground running. Mo S; Chow DHK Gait Posture; 2018 Jan; 59():93-98. PubMed ID: 29028626 [TBL] [Abstract][Full Text] [Related]
9. A novel method for accurate division of the gait cycle into seven phases using shank angular velocity. Salminen M; Perttunen J; Avela J; Vehkaoja A Gait Posture; 2024 Jun; 111():1-7. PubMed ID: 38603967 [TBL] [Abstract][Full Text] [Related]
10. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Jasiewicz JM; Allum JH; Middleton JW; Barriskill A; Condie P; Purcell B; Li RC Gait Posture; 2006 Dec; 24(4):502-9. PubMed ID: 16500102 [TBL] [Abstract][Full Text] [Related]
11. Towards Inertial Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters. Teufl W; Lorenz M; Miezal M; Taetz B; Fröhlich M; Bleser G Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583508 [TBL] [Abstract][Full Text] [Related]
12. Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: Comparison with patient-based measure. Pau M; Caggiari S; Mura A; Corona F; Leban B; Coghe G; Lorefice L; Marrosu MG; Cocco E Mult Scler Relat Disord; 2016 Nov; 10():187-191. PubMed ID: 27919488 [TBL] [Abstract][Full Text] [Related]
13. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection. Nazarahari M; Khandan A; Khan A; Rouhani H J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897 [TBL] [Abstract][Full Text] [Related]
14. Characterizing knee loading asymmetry in individuals following anterior cruciate ligament reconstruction using inertial sensors. Sigward SM; Chan MM; Lin PE Gait Posture; 2016 Sep; 49():114-119. PubMed ID: 27395452 [TBL] [Abstract][Full Text] [Related]
15. Gait recording with inertial sensors--How to determine initial and terminal contact. Bötzel K; Marti FM; Rodríguez MÁ; Plate A; Vicente AO J Biomech; 2016 Feb; 49(3):332-7. PubMed ID: 26768229 [TBL] [Abstract][Full Text] [Related]
16. A new instrumented method for the evaluation of gait initiation and step climbing based on inertial sensors: a pilot application in Parkinson's disease. Bonora G; Carpinella I; Cattaneo D; Chiari L; Ferrarin M J Neuroeng Rehabil; 2015 May; 12():45. PubMed ID: 25940457 [TBL] [Abstract][Full Text] [Related]
17. The impact of Nordic walking training on the gait of the elderly. Ben Mansour K; Gorce P; Rezzoug N J Sports Sci; 2018 Oct; 36(20):2368-2374. PubMed ID: 29582714 [TBL] [Abstract][Full Text] [Related]
19. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods. Storm FA; Buckley CJ; Mazzà C Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451 [TBL] [Abstract][Full Text] [Related]
20. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. Trojaniello D; Cereatti A; Pelosin E; Avanzino L; Mirelman A; Hausdorff JM; Della Croce U J Neuroeng Rehabil; 2014 Nov; 11():152. PubMed ID: 25388296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]