BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26341838)

  • 1. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
    Moreno R; Smedby Ö; Pahr DH
    Biomech Model Mechanobiol; 2016 Aug; 15(4):831-44. PubMed ID: 26341838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis.
    Chandran V; Reyes M; Zysset P
    PLoS One; 2017; 12(11):e0187874. PubMed ID: 29176881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the trabecular bone apparent stiffness tensor with spherical convolutional neural networks.
    Sinzinger F; van Kerkvoorde J; Pahr DH; Moreno R
    Bone Rep; 2022 Jun; 16():101179. PubMed ID: 35309107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-intercept anisotropy analysis of porous media. II. Conceptual shortcomings of the MIL tensor definition and Minkowski tensors as an alternative.
    Klatt MA; Schröder-Turk GE; Mecke K
    Med Phys; 2017 Jul; 44(7):3663-3675. PubMed ID: 28425122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabric-elasticity relationships of tibial trabecular bone are similar in osteogenesis imperfecta and healthy individuals.
    Simon M; Indermaur M; Schenk D; Hosseinitabatabaei S; Willie BM; Zysset P
    Bone; 2022 Feb; 155():116282. PubMed ID: 34896360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabric and elastic principal directions of cancellous bone are closely related.
    Odgaard A; Kabel J; van Rietbergen B; Dalstra M; Huiskes R
    J Biomech; 1997 May; 30(5):487-95. PubMed ID: 9109560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations.
    Gross T; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2013 Aug; 12(4):793-800. PubMed ID: 23053593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. μCT-based trabecular anisotropy can be reproducibly computed from HR-pQCT scans using the triangulated bone surface.
    Hosseini HS; Maquer G; Zysset PK
    Bone; 2017 Apr; 97():114-120. PubMed ID: 28109918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of boundary conditions on yield properties of human femoral trabecular bone.
    Panyasantisuk J; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1043-53. PubMed ID: 26517986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can DXA image-based deep learning model predict the anisotropic elastic behavior of trabecular bone?
    Xiao P; Haque E; Zhang T; Dong XN; Huang Y; Wang X
    J Mech Behav Biomed Mater; 2021 Dec; 124():104834. PubMed ID: 34544016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalence of mean intercept length and gradient fabric tensors - 3D study.
    Tabor Z
    Med Eng Phys; 2012 Jun; 34(5):598-604. PubMed ID: 21968004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images.
    Kersh ME; Zysset PK; Pahr DH; Wolfram U; Larsson D; Pandy MG
    J Biomech; 2013 Oct; 46(15):2659-66. PubMed ID: 24007613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study.
    Kreipke TC; Niebur GL
    Ann Biomed Eng; 2017 Jun; 45(6):1543-1554. PubMed ID: 28155122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.