BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26341838)

  • 21. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.
    Maquer G; Musy SN; Wandel J; Gross T; Zysset PK
    J Bone Miner Res; 2015 Jun; 30(6):1000-8. PubMed ID: 25529534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Principal trabecular structural orientation predicted by quantitative ultrasound is strongly correlated with μFEA determined anisotropic apparent stiffness.
    Lin L; Oon HY; Lin W; Qin YX
    Biomech Model Mechanobiol; 2014 Oct; 13(5):961-71. PubMed ID: 24419558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of the effective yield properties of human trabecular bone using nonlinear micro-finite element analyses.
    Wili P; Maquer G; Panyasantisuk J; Zysset PK
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1925-1936. PubMed ID: 28643141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A global relationship between trabecular bone morphology and homogenized elastic properties.
    Zysset PK; Goulet RW; Hollister SJ
    J Biomech Eng; 1998 Oct; 120(5):640-6. PubMed ID: 10412443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the equivalence of two methods of determining fabric tensor.
    Tabor Z
    Med Eng Phys; 2009 Dec; 31(10):1313-22. PubMed ID: 19800283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions.
    Van Rietbergen B; Odgaard A; Kabel J; Huiskes R
    J Orthop Res; 1998 Jan; 16(1):23-8. PubMed ID: 9565069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of mixed and kinematic uniform boundary conditions in homogenized elasticity of femoral trabecular bone using microfinite element analyses.
    Panyasantisuk J; Pahr DH; Gross T; Zysset PK
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25363247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture.
    Kabel J; van Rietbergen B; Odgaard A; Huiskes R
    Bone; 1999 Oct; 25(4):481-6. PubMed ID: 10511116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical analysis of the inter-individual variations of the bone shape, volume fraction and fabric and their correlations in the proximal femur.
    Taghizadeh E; Chandran V; Reyes M; Zysset P; Büchler P
    Bone; 2017 Oct; 103():252-261. PubMed ID: 28732775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical estimation of femur micro-architecture using optimal shape and density predictors.
    Lekadir K; Hazrati-Marangalou J; Hoogendoorn C; Taylor Z; van Rietbergen B; Frangi AF
    J Biomech; 2015 Feb; 48(4):598-603. PubMed ID: 25624314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel 3D Microstructural Model for Trabecular Bone: I. The Relationship between Fabric and Elasticity.
    Zysset PK; Ominsky MS; Goldstein SA
    Comput Methods Biomech Biomed Engin; 1998; 1(4):321-331. PubMed ID: 11264812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human vertebral body apparent and hard tissue stiffness.
    Hou FJ; Lang SM; Hoshaw SJ; Reimann DA; Fyhrie DP
    J Biomech; 1998 Nov; 31(11):1009-15. PubMed ID: 9880057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic Anisotropy of Trabecular Bone in the Elderly Human Vertebra.
    Unnikrishnan GU; Gallagher JA; Hussein AI; Barest GD; Morgan EF
    J Biomech Eng; 2015 Nov; 137(11):114503. PubMed ID: 26300326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors.
    Lekadir K; Noble C; Hazrati-Marangalou J; Hoogendoorn C; van Rietbergen B; Taylor ZA; Frangi AF
    Ann Biomed Eng; 2016 Jan; 44(1):234-46. PubMed ID: 26307331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of morphology-elasticity relationships in human trabecular bone: theories and experiments.
    Zysset PK
    J Biomech; 2003 Oct; 36(10):1469-85. PubMed ID: 14499296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology-based prediction of elastic properties of trabecular bone samples.
    Cosmi F
    Acta Bioeng Biomech; 2009; 11(1):3-9. PubMed ID: 19736904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.