These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26341849)

  • 1. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient cavitation in high-quality-factor resonators at high static pressures.
    Gaitan DF; Tessien RA; Hiller RA; Gutierrez J; Scott C; Tardif H; Callahan B; Matula TJ; Crum LA; Holt RG; Church CC; Raymond JL
    J Acoust Soc Am; 2010 Jun; 127(6):3456-65. PubMed ID: 20550245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of static pressure on the inertial cavitation threshold.
    Bader KB; Raymond JL; Mobley J; Church CC; Felipe Gaitan D
    J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy partition at the collapse of spherical cavitation bubbles.
    Tinguely M; Obreschkow D; Kobel P; Dorsaz N; de Bosset A; Farhat M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046315. PubMed ID: 23214685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on fracture of tungsten wire induced by acoustic cavitation at different hydrostatic pressures and driving electric powers.
    Zhang Y; Zhang Z; Wu J; Liu Y; Zhang M; Yang C; He M; Gong X; Zhang Z; Wang Z; Li F
    Ultrason Sonochem; 2020 Nov; 68():105232. PubMed ID: 32593150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device.
    Choi MJ; Kang G; Huh JS
    Biomed Eng Lett; 2017 May; 7(2):143-151. PubMed ID: 30603161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical and experimental investigations on the jet and shock wave dynamics during the cavitation bubble collapsing near spherical particles based on OpenFOAM.
    Hu J; Lu X; Liu Y; Duan J; Liu Y; Yu J; Zheng X; Zhang Y; Zhang Y
    Ultrason Sonochem; 2023 Oct; 99():106576. PubMed ID: 37683417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation inception pressure and bubble cloud formation due to the backscattering of high-intensity focused ultrasound from a laser-induced bubble.
    Horiba T; Ogasawara T; Takahira H
    J Acoust Soc Am; 2020 Feb; 147(2):1207. PubMed ID: 32113276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the liquid viscosity on the formation of bubble structures in a 20kHz field.
    Salinas V; Vargas Y; Louisnard O; Gaete L
    Ultrason Sonochem; 2015 Jan; 22():227-34. PubMed ID: 25082762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic cavitation in 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide based ionic liquid.
    Merouani S; Hamdaoui O; Haddad B
    Ultrason Sonochem; 2018 Mar; 41():143-155. PubMed ID: 29137737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.