These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Correlation between RNA-Seq and microarrays results using TCGA data. Chen L; Sun F; Yang X; Jin Y; Shi M; Wang L; Shi Y; Zhan C; Wang Q Gene; 2017 Sep; 628():200-204. PubMed ID: 28734892 [TBL] [Abstract][Full Text] [Related]
10. LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates. Gim J; Won S; Park T PLoS One; 2016; 11(8):e0159182. PubMed ID: 27532300 [TBL] [Abstract][Full Text] [Related]
11. Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model. Li X; Wu D; Cooper NGF; Rai SN Stat Appl Genet Mol Biol; 2019 Jan; 18(1):. PubMed ID: 30667368 [TBL] [Abstract][Full Text] [Related]
13. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. Suárez-Fariñas M; Ungar B; Correa da Rosa J; Ewald DA; Rozenblit M; Gonzalez J; Xu H; Zheng X; Peng X; Estrada YD; Dillon SR; Krueger JG; Guttman-Yassky E J Allergy Clin Immunol; 2015 May; 135(5):1218-27. PubMed ID: 25840722 [TBL] [Abstract][Full Text] [Related]
14. Discrete distributional differential expression (D3E)--a tool for gene expression analysis of single-cell RNA-seq data. Delmans M; Hemberg M BMC Bioinformatics; 2016 Feb; 17():110. PubMed ID: 26927822 [TBL] [Abstract][Full Text] [Related]
15. Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis. Rigaill G; Balzergue S; Brunaud V; Blondet E; Rau A; Rogier O; Caius J; Maugis-Rabusseau C; Soubigou-Taconnat L; Aubourg S; Lurin C; Martin-Magniette ML; Delannoy E Brief Bioinform; 2018 Jan; 19(1):65-76. PubMed ID: 27742662 [TBL] [Abstract][Full Text] [Related]
16. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines. Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis. Choi SH; Labadorf AT; Myers RH; Lunetta KL; Dupuis J; DeStefano AL BMC Bioinformatics; 2017 Feb; 18(1):91. PubMed ID: 28166718 [TBL] [Abstract][Full Text] [Related]
18. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate. Liu X; Shi X; Chen C; Zhang L BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308 [TBL] [Abstract][Full Text] [Related]
19. RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo[a]pyrene. van Delft J; Gaj S; Lienhard M; Albrecht MW; Kirpiy A; Brauers K; Claessen S; Lizarraga D; Lehrach H; Herwig R; Kleinjans J Toxicol Sci; 2012 Dec; 130(2):427-39. PubMed ID: 22889811 [TBL] [Abstract][Full Text] [Related]
20. Using microarray-based subtyping methods for breast cancer in the era of high-throughput RNA sequencing. Pedersen CB; Nielsen FC; Rossing M; Olsen LR Mol Oncol; 2018 Dec; 12(12):2136-2146. PubMed ID: 30289602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]