These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26342128)

  • 1. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline.
    Rahmatallah Y; Emmert-Streib F; Glazko G
    Brief Bioinform; 2016 May; 17(3):393-407. PubMed ID: 26342128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative evaluation of gene set analysis approaches for RNA-Seq data.
    Rahmatallah Y; Emmert-Streib F; Glazko G
    BMC Bioinformatics; 2014 Dec; 15(1):397. PubMed ID: 25475910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting the Strongest Signals from Omics Data: Differentially Expressed Pathways and Beyond.
    Glazko G; Rahmatallah Y; Zybailov B; Emmert-Streib F
    Methods Mol Biol; 2017; 1613():125-159. PubMed ID: 28849561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust identification of differentially expressed genes from RNA-seq data.
    Shahjaman M; Manir Hossain Mollah M; Rezanur Rahman M; Islam SMS; Nurul Haque Mollah M
    Genomics; 2020 Mar; 112(2):2000-2010. PubMed ID: 31756426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments.
    Bi R; Liu P
    BMC Bioinformatics; 2016 Mar; 17():146. PubMed ID: 27029470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-seq differential expression studies: more sequence or more replication?
    Liu Y; Zhou J; White KP
    Bioinformatics; 2014 Feb; 30(3):301-4. PubMed ID: 24319002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal alpha reduces error rates in gene expression studies: a meta-analysis approach.
    Mudge JF; Martyniuk CJ; Houlahan JE
    BMC Bioinformatics; 2017 Jun; 18(1):312. PubMed ID: 28637422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between RNA-Seq and microarrays results using TCGA data.
    Chen L; Sun F; Yang X; Jin Y; Shi M; Wang L; Shi Y; Zhan C; Wang Q
    Gene; 2017 Sep; 628():200-204. PubMed ID: 28734892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates.
    Gim J; Won S; Park T
    PLoS One; 2016; 11(8):e0159182. PubMed ID: 27532300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model.
    Li X; Wu D; Cooper NGF; Rai SN
    Stat Appl Genet Mol Biol; 2019 Jan; 18(1):. PubMed ID: 30667368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications.
    Suárez-Fariñas M; Ungar B; Correa da Rosa J; Ewald DA; Rozenblit M; Gonzalez J; Xu H; Zheng X; Peng X; Estrada YD; Dillon SR; Krueger JG; Guttman-Yassky E
    J Allergy Clin Immunol; 2015 May; 135(5):1218-27. PubMed ID: 25840722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete distributional differential expression (D3E)--a tool for gene expression analysis of single-cell RNA-seq data.
    Delmans M; Hemberg M
    BMC Bioinformatics; 2016 Feb; 17():110. PubMed ID: 26927822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis.
    Rigaill G; Balzergue S; Brunaud V; Blondet E; Rau A; Rogier O; Caius J; Maugis-Rabusseau C; Soubigou-Taconnat L; Aubourg S; Lurin C; Martin-Magniette ML; Delannoy E
    Brief Bioinform; 2018 Jan; 19(1):65-76. PubMed ID: 27742662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
    Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N
    BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis.
    Choi SH; Labadorf AT; Myers RH; Lunetta KL; Dupuis J; DeStefano AL
    BMC Bioinformatics; 2017 Feb; 18(1):91. PubMed ID: 28166718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.
    Liu X; Shi X; Chen C; Zhang L
    BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo[a]pyrene.
    van Delft J; Gaj S; Lienhard M; Albrecht MW; Kirpiy A; Brauers K; Claessen S; Lizarraga D; Lehrach H; Herwig R; Kleinjans J
    Toxicol Sci; 2012 Dec; 130(2):427-39. PubMed ID: 22889811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using microarray-based subtyping methods for breast cancer in the era of high-throughput RNA sequencing.
    Pedersen CB; Nielsen FC; Rossing M; Olsen LR
    Mol Oncol; 2018 Dec; 12(12):2136-2146. PubMed ID: 30289602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.