These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 26342233)

  • 1. ResiCon: a method for the identification of dynamic domains, hinges and interfacial regions in proteins.
    Dziubiński M; Daniluk P; Lesyng B
    Bioinformatics; 2016 Jan; 32(1):25-34. PubMed ID: 26342233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.
    Sim J; Sim J; Park E; Lee J
    Proteins; 2015 Jun; 83(6):1054-67. PubMed ID: 25820699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAMA: a method for computing multiple alignments of protein structures using local structure descriptors.
    Daniluk P; Oleniecki T; Lesyng B
    Bioinformatics; 2021 Dec; 38(1):80-85. PubMed ID: 34396393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using ensemble of classifiers for predicting HIV protease cleavage sites in proteins.
    Nanni L; Lumini A
    Amino Acids; 2009 Mar; 36(3):409-16. PubMed ID: 18401541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble-based evaluation for protein structure models.
    Jamroz M; Kolinski A; Kihara D
    Bioinformatics; 2016 Jun; 32(12):i314-i321. PubMed ID: 27307633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascade detection for the extraction of localized sequence features; specificity results for HIV-1 protease and structure-function results for the Schellman loop.
    Newell NE
    Bioinformatics; 2011 Dec; 27(24):3415-22. PubMed ID: 22039211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CABS-flex predictions of protein flexibility compared with NMR ensembles.
    Jamroz M; Kolinski A; Kmiecik S
    Bioinformatics; 2014 Aug; 30(15):2150-4. PubMed ID: 24735558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus modes, a robust description of protein collective motions from multiple-minima normal mode analysis--application to the HIV-1 protease.
    Batista PR; Robert CH; Maréchal JD; Hamida-Rebaï MB; Pascutti PG; Bisch PM; Perahia D
    Phys Chem Chem Phys; 2010 Mar; 12(12):2850-9. PubMed ID: 20449375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of cleavage sites for HIV-1 protease in native proteins.
    You L
    Comput Syst Bioinformatics Conf; 2006; ():249-56. PubMed ID: 17369643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of HIV protease binding pockets based on 3D shape and electrostatic potential descriptors.
    Reddy AS; Jalahalli V; Kumar S; Garg R; Zhang X; Sastry GN
    Chem Biol Drug Des; 2011 Feb; 77(2):137-51. PubMed ID: 21266017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PROFbval: predict flexible and rigid residues in proteins.
    Schlessinger A; Yachdav G; Rost B
    Bioinformatics; 2006 Apr; 22(7):891-3. PubMed ID: 16455751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
    Deshmukh L; Tugarinov V; Louis JM; Clore GM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9855-E9862. PubMed ID: 29087351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics.
    Meher BR; Kumar MV; Bandyopadhyay P
    J Biomol Struct Dyn; 2014; 32(6):899-915. PubMed ID: 23782135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graph theoretical approach for analysis of protein flexibility change at protein complex formation.
    Del Carpio M CA; Shaikh AR; Ichiishi E; Koyama M; Kubo M; Nishijima K; Miyamoto A
    Genome Inform; 2005; 16(2):148-60. PubMed ID: 16901098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matching Multiple Rigid Domain Decompositions of Proteins.
    Flynn E; Streinu I
    IEEE Trans Nanobioscience; 2017 Mar; 16(2):81-90. PubMed ID: 28141528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of HIV-1 protease: the rigidity perspective.
    Heal JW; Jimenez-Roldan JE; Wells SA; Freedman RB; Römer RA
    Bioinformatics; 2012 Feb; 28(3):350-7. PubMed ID: 22291339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional solution structure of the HIV-1 protease complexed with DMP323, a novel cyclic urea-type inhibitor, determined by nuclear magnetic resonance spectroscopy.
    Yamazaki T; Hinck AP; Wang YX; Nicholson LK; Torchia DA; Wingfield P; Stahl SJ; Kaufman JD; Chang CH; Domaille PJ; Lam PY
    Protein Sci; 1996 Mar; 5(3):495-506. PubMed ID: 8868486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient molecular docking of NMR structures: application to HIV-1 protease.
    Huang SY; Zou X
    Protein Sci; 2007 Jan; 16(1):43-51. PubMed ID: 17123961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HYCUD: a computational tool for prediction of effective rotational correlation time in flexible proteins.
    Rezaei-Ghaleh N; Klama F; Munari F; Zweckstetter M
    Bioinformatics; 2015 Apr; 31(8):1319-21. PubMed ID: 25505088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.