These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26342457)

  • 1. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis.
    Vashishtha AK; West AH; Cook PF
    Arch Biochem Biophys; 2015 Oct; 584():98-106. PubMed ID: 26342457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae.
    Vashishtha AK; West AH; Cook PF
    Biochemistry; 2009 Jun; 48(25):5899-907. PubMed ID: 19449898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH.
    Bobyk KD; Kim SG; Kumar VP; Kim SK; West AH; Cook PF
    Arch Biochem Biophys; 2011 Sep; 513(2):71-80. PubMed ID: 21798231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; Alguindigue SS; West AH; Cook PF
    Biochemistry; 2007 Jan; 46(3):871-82. PubMed ID: 17223709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme.
    Hsu C; West AH; Cook PF
    Arch Biochem Biophys; 2015 Oct; 584():20-7. PubMed ID: 26325079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts.
    Ekanayake DK; Andi B; Bobyk KD; West AH; Cook PF
    J Biol Chem; 2010 Jul; 285(27):20756-68. PubMed ID: 20427272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overall kinetic mechanism of saccharopine dehydrogenase (L-glutamate forming) from Saccharomyces cerevisiae.
    Vashishtha AK; West AH; Cook PF
    Biochemistry; 2008 May; 47(19):5417-23. PubMed ID: 18416559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; West AH; Cook PF
    Arch Biochem Biophys; 2012 Jun; 522(1):57-61. PubMed ID: 22521736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; West AH; Cook PF
    Biochemistry; 2009 Aug; 48(30):7305-12. PubMed ID: 19530703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine biosynthesis in selected pathogenic fungi: characterization of lysine auxotrophs and the cloned LYS1 gene of Candida albicans.
    Garrad RC; Bhattacharjee JK
    J Bacteriol; 1992 Nov; 174(22):7379-84. PubMed ID: 1429460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of saccharopine reductase from Magnaporthe grisea, an enzyme of the alpha-aminoadipate pathway of lysine biosynthesis.
    Johansson E; Steffens JJ; Lindqvist Y; Schneider G
    Structure; 2000 Oct; 8(10):1037-47. PubMed ID: 11080625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of K99 and D319 to substrate binding and catalysis in the saccharopine dehydrogenase reaction.
    Ekanayake DK; West AH; Cook PF
    Arch Biochem Biophys; 2011 Oct; 514(1-2):8-15. PubMed ID: 21819960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the his-tagged saccharopine reductase from Saccharomyces cerevisiae at 1.7-A resolution.
    Andi B; Cook PF; West AH
    Cell Biochem Biophys; 2006; 46(1):17-26. PubMed ID: 16943620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Andi B; Xu H; Cook PF; West AH
    Biochemistry; 2007 Nov; 46(44):12512-21. PubMed ID: 17939687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2007 Jun; 46(25):7625-36. PubMed ID: 17542618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of the final enzyme in the alpha-aminoadipate pathway-saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Burk DL; Hwang J; Kwok E; Marrone L; Goodfellow V; Dmitrienko GI; Berghuis AM
    J Mol Biol; 2007 Oct; 373(3):745-54. PubMed ID: 17854830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A QM/MM-based computational investigation on the catalytic mechanism of saccharopine reductase.
    Almasi JN; Bushnell EA; Gauld JW
    Molecules; 2011 Oct; 16(10):8569-89. PubMed ID: 21993247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase.
    Naranjo L; Martin de Valmaseda E; Bañuelos O; Lopez P; Riaño J; Casqueiro J; Martin JF
    J Bacteriol; 2001 Dec; 183(24):7165-72. PubMed ID: 11717275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.