These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 26342678)

  • 41. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.
    Juhasz J; Davis JH; Sharom FJ
    Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters.
    Sezgin E; Can FB; Schneider F; Clausen MP; Galiani S; Stanly TA; Waithe D; Colaco A; Honigmann A; Wüstner D; Platt F; Eggeling C
    J Lipid Res; 2016 Feb; 57(2):299-309. PubMed ID: 26701325
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantifying lipid diffusion by fluorescence correlation spectroscopy: a critical treatise.
    Heinemann F; Betaneli V; Thomas FA; Schwille P
    Langmuir; 2012 Sep; 28(37):13395-404. PubMed ID: 22891610
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption.
    Kristensen K; Henriksen JR; Andresen TL
    Methods Mol Biol; 2017; 1548():159-180. PubMed ID: 28013503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioadhesive giant vesicles for monitoring hydroperoxidation in lipid membranes.
    Aoki PH; Schroder AP; Constantino CJ; Marques CM
    Soft Matter; 2015 Aug; 11(30):5995-8. PubMed ID: 26067909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of constant tension-induced rupture of lipid membranes using activation energy.
    Karal MA; Levadnyy V; Yamazaki M
    Phys Chem Chem Phys; 2016 May; 18(19):13487-95. PubMed ID: 27125194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trapping, deformation, and rotation of giant unilamellar vesicles in octode dielectrophoretic field cages.
    Korlach J; Reichle C; Müller T; Schnelle T; Webb WW
    Biophys J; 2005 Jul; 89(1):554-62. PubMed ID: 15863477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles.
    Ahamed MK; Karal MAS; Ahmed M; Ahammed S
    Eur Biophys J; 2020 Jul; 49(5):371-381. PubMed ID: 32494845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.
    Morigaki K; Tanimoto Y
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2012-2017. PubMed ID: 29550290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains.
    Ceccarelli A; Di Venere A; Nicolai E; De Luca A; Rosato N; Gratton E; Mei G; Caccuri AM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):813-822. PubMed ID: 28499815
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions.
    Montes LR; Alonso A; Goñi FM; Bagatolli LA
    Biophys J; 2007 Nov; 93(10):3548-54. PubMed ID: 17704162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The C2 domains of otoferlin, dysferlin, and myoferlin alter the packing of lipid bilayers.
    Marty NJ; Holman CL; Abdullah N; Johnson CP
    Biochemistry; 2013 Aug; 52(33):5585-92. PubMed ID: 23859474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry.
    Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T
    Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Giant lipid vesicles under electric field pulses assessed by non invasive imaging.
    Mauroy C; Portet T; Winterhalder M; Bellard E; Blache MC; Teissié J; Zumbusch A; Rols MP
    Bioelectrochemistry; 2012 Oct; 87():253-9. PubMed ID: 22560131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence correlation spectroscopy.
    Bacia K; Schwille P
    Methods Mol Biol; 2007; 398():73-84. PubMed ID: 18214375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and application of a new optical probe for membrane lipid domains.
    Jin L; Millard AC; Wuskell JP; Dong X; Wu D; Clark HA; Loew LM
    Biophys J; 2006 Apr; 90(7):2563-75. PubMed ID: 16415047
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental Estimation of Membrane Tension Induced by Osmotic Pressure.
    Alam Shibly SU; Ghatak C; Sayem Karal MA; Moniruzzaman M; Yamazaki M
    Biophys J; 2016 Nov; 111(10):2190-2201. PubMed ID: 27851942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vesicle budding induced by a pore-forming peptide.
    Yu Y; Vroman JA; Bae SC; Granick S
    J Am Chem Soc; 2010 Jan; 132(1):195-201. PubMed ID: 20000420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.