These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
915 related articles for article (PubMed ID: 26342927)
1. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Liu H; Wu W; Hou K; Chen J; Zhao Z Mol Genet Genomics; 2016 Feb; 291(1):337-48. PubMed ID: 26342927 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome changes in Polygonum multiflorum Thunb. roots induced by methyl jasmonate. Liu HC; Wu W; Hou K; Chen JW; Zhao Z J Zhejiang Univ Sci B; 2015 Dec; 16(12):1027-41. PubMed ID: 26642186 [TBL] [Abstract][Full Text] [Related]
3. Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate. Sun G; Yang Y; Xie F; Wen JF; Wu J; Wilson IW; Tang Q; Liu H; Qiu D PLoS One; 2013; 8(4):e62865. PubMed ID: 23646152 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Luo H; Zhu Y; Song J; Xu L; Sun C; Zhang X; Xu Y; He L; Sun W; Xu H; Wang B; Li X; Li C; Liu J; Chen S Physiol Plant; 2014 Oct; 152(2):241-55. PubMed ID: 24660670 [TBL] [Abstract][Full Text] [Related]
5. Temporal transcriptome changes induced by methyl jasmonate in Salvia sclarea. Hao da C; Chen SL; Osbourn A; Kontogianni VG; Liu LW; Jordán MJ Gene; 2015 Mar; 558(1):41-53. PubMed ID: 25536164 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659 [TBL] [Abstract][Full Text] [Related]
7. Deep Sequencing Reveals the Effect of MeJA on Scutellarin Biosynthesis in Erigeron breviscapus. Chen RB; Liu JH; Xiao Y; Zhang F; Chen JF; Ji Q; Tan HX; Huang X; Feng H; Huang BK; Chen WS; Zhang L PLoS One; 2015; 10(12):e0143881. PubMed ID: 26656917 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. Li ST; Zhang P; Zhang M; Fu CH; Zhao CF; Dong YS; Guo AY; Yu LJ BMC Genomics; 2012 Jul; 13():295. PubMed ID: 22748077 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional Responses and Gentiopicroside Biosynthesis in Methyl Jasmonate-Treated Gentiana macrophylla Seedlings. Cao X; Guo X; Yang X; Wang H; Hua W; He Y; Kang J; Wang Z PLoS One; 2016; 11(11):e0166493. PubMed ID: 27851826 [TBL] [Abstract][Full Text] [Related]
10. Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum. Ho TT; Lee JD; Jeong CS; Paek KY; Park SY Appl Microbiol Biotechnol; 2018 Jan; 102(1):199-209. PubMed ID: 29138909 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus. Pan YJ; Lin YC; Yu BF; Zu YG; Yu F; Tang ZH BMC Genomics; 2018 Jul; 19(1):508. PubMed ID: 29966514 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional Profiling and Molecular Characterization of Astragalosides, Calycosin, and Calycosin-7-O-β-D-glucoside Biosynthesis in the Hairy Roots of Astragalus membranaceus in Response to Methyl Jasmonate. Tuan PA; Chung E; Thwe AA; Li X; Kim YB; Mariadhas VA; Al-Dhabi NA; Lee JH; Park SU J Agric Food Chem; 2015 Jul; 63(27):6231-40. PubMed ID: 26072674 [TBL] [Abstract][Full Text] [Related]
13. De novo assembly and Transcriptome Analysis of the Momordica charantia Seedlings Responding to methyl jasmonate using 454 pyrosequencing. Yi S; Song X; Yu W; Zhang R; Wang W; Zhao Y; Han B; Gai Y Gene Expr Patterns; 2021 Jun; 40():119160. PubMed ID: 33253895 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. Shi J; Ma C; Qi D; Lv H; Yang T; Peng Q; Chen Z; Lin Z BMC Plant Biol; 2015 Sep; 15():233. PubMed ID: 26420557 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Analysis of JA Signal Transduction, Transcription Factors, and Monoterpene Biosynthesis Pathway in Response to Methyl Jasmonate Elicitation in Qi X; Fang H; Yu X; Xu D; Li L; Liang C; Lu H; Li W; Chen Y; Chen Z Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30103476 [No Abstract] [Full Text] [Related]
16. Profiling methyl jasmonate-responsive transcriptome for understanding induced systemic resistance in whitebark pine (Pinus albicaulis). Liu JJ; Williams H; Li XR; Schoettle AW; Sniezko RA; Murray M; Zamany A; Roke G; Chen H Plant Mol Biol; 2017 Nov; 95(4-5):359-374. PubMed ID: 28861810 [TBL] [Abstract][Full Text] [Related]
18. De novo Transcriptome Sequencing of MeJA-Induced Taraxacum koksaghyz Rodin to Identify Genes Related to Rubber Formation. Cao X; Yan J; Lei J; Li J; Zhu J; Zhang H Sci Rep; 2017 Nov; 7(1):15697. PubMed ID: 29146946 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Cao H; Nuruzzaman M; Xiu H; Huang J; Wu K; Chen X; Li J; Wang L; Jeong JH; Park SJ; Yang F; Luo J; Luo Z Int J Mol Sci; 2015 Jan; 16(2):3035-57. PubMed ID: 25642758 [TBL] [Abstract][Full Text] [Related]
20. De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus. Upadhyay S; Phukan UJ; Mishra S; Shukla RK BMC Genomics; 2014 Aug; 15(1):746. PubMed ID: 25174837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]