These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26343109)

  • 1. Cancer: A Problem of Developmental Biology; Scientific Evidence for Reprogramming and Differentiation Therapy.
    Sell S; Nicolini A; Ferrari P; Biava PM
    Curr Drug Targets; 2016; 17(10):1103-10. PubMed ID: 26343109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem Cell Differentiation Stage Factors and their Role in Triggering Symmetry Breaking Processes during Cancer Development: A Quantum Field Theory Model for Reprogramming Cancer Cells to Healthy Phenotypes.
    Biava PM; Burigana F; Germano R; Kurian P; Verzegnassi C; Vitiello G
    Curr Med Chem; 2019; 26(6):988-1001. PubMed ID: 28933288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells.
    Shah M; Allegrucci C
    Subcell Biochem; 2013; 61():545-65. PubMed ID: 23150267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem cell origin of cancer and differentiation therapy.
    Sell S
    Crit Rev Oncol Hematol; 2004 Jul; 51(1):1-28. PubMed ID: 15207251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells.
    Stindl R
    Med Hypotheses; 2008; 71(1):126-40. PubMed ID: 18294777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systemic approach to cancer treatment: tumor cell reprogramming focused on endocrine-related cancers.
    Biava PM; Nicolini A; Ferrari P; Carpi A; Sell S
    Curr Med Chem; 2014; 21(9):1072-81. PubMed ID: 24304275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers.
    Sell S; Pierce GB
    Lab Invest; 1994 Jan; 70(1):6-22. PubMed ID: 8302019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A developmental framework for induced pluripotency.
    Takahashi K; Yamanaka S
    Development; 2015 Oct; 142(19):3274-85. PubMed ID: 26443632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common themes of dedifferentiation in somatic cell reprogramming and cancer.
    Daley GQ
    Cold Spring Harb Symp Quant Biol; 2008; 73():171-4. PubMed ID: 19150965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprogramming cancer cells in endocrine-related tumors: open issues.
    Tafani M; Perrone GA; Pucci B; Russo A; Bizzarri M; Mechanick JI; Carpi A; Russo MA
    Curr Med Chem; 2014; 21(9):1146-51. PubMed ID: 24304280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryogenesis, morphogens and cancer stem cells: putting the puzzle together.
    Fontana A; Wróbel B
    Med Hypotheses; 2013 Oct; 81(4):643-9. PubMed ID: 23932050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early epigenetic cancer decisions.
    Martín-Lorenzo A; Gonzalez-Herrero I; Rodríguez-Hernández G; García-Ramírez I; Vicente-Dueñas C; Sánchez-García I
    Biol Chem; 2014 Nov; 395(11):1315-20. PubMed ID: 25205718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.
    Vicente-Dueñas C; Hauer J; Ruiz-Roca L; Ingenhag D; Rodríguez-Meira A; Auer F; Borkhardt A; Sánchez-García I
    Semin Cancer Biol; 2015 Jun; 32():3-9. PubMed ID: 24530939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell plasticity in cancer: A complex interplay of genetic, epigenetic mechanisms and tumor micro-environment.
    Shenoy S
    Surg Oncol; 2020 Sep; 34():154-162. PubMed ID: 32891322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current status in cancer cell reprogramming and its clinical implications.
    Izgi K; Canatan H; Iskender B
    J Cancer Res Clin Oncol; 2017 Mar; 143(3):371-383. PubMed ID: 27620745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells.
    Postovit LM; Seftor EA; Seftor RE; Hendrix MJ
    Stem Cells; 2006 Mar; 24(3):501-5. PubMed ID: 16293574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?
    Yilmazer A; de Lázaro I; Taheri H
    Cancer Lett; 2015 Dec; 369(1):1-8. PubMed ID: 26276716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of iPS cell technology to cancer epigenome study: uncovering the mechanism of cell status conversion for drug resistance in tumor.
    Matsuda Y; Semi K; Yamada Y
    Pathol Int; 2014 Jul; 64(7):299-308. PubMed ID: 25047500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic pH derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells.
    Tavakol S
    Med Hypotheses; 2014 Dec; 83(6):668-72. PubMed ID: 25459130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular biology of the stress response in the early embryo and its stem cells.
    Puscheck EE; Awonuga AO; Yang Y; Jiang Z; Rappolee DA
    Adv Exp Med Biol; 2015; 843():77-128. PubMed ID: 25956296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.