BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 26343227)

  • 1. A device for characterising the mechanical properties of the plantar soft tissue of the foot.
    Parker D; Cooper G; Pearson S; Crofts G; Howard D; Busby P; Nester C
    Med Eng Phys; 2015 Nov; 37(11):1098-104. PubMed ID: 26343227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The design and validation of a magnetic resonance imaging-compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition.
    Williams ED; Stebbins MJ; Cavanagh PR; Haynor DR; Chu B; Fassbind MJ; Isvilanonda V; Ledoux WR
    Proc Inst Mech Eng H; 2015 Oct; 229(10):732-42. PubMed ID: 26405098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis.
    Yarnitzky G; Yizhar Z; Gefen A
    J Biomech; 2006; 39(14):2673-89. PubMed ID: 16212969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the mechanical behaviour of the plantar soft tissue during gait cycle: Experimental and numerical activities.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2015 Oct; 229(10):713-20. PubMed ID: 26405096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An MRI compatible loading device for the reconstruction of clinically relevant plantar pressure distributions and loading scenarios of the forefoot.
    Chatzistergos PE; Naemi R; Chockalingam N
    Med Eng Phys; 2014 Sep; 36(9):1205-11. PubMed ID: 25012640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a foot scanner for assessing the mechanical properties of plantar soft tissues under different bodyweight loading in standing.
    Zheng YP; Huang YP; Zhu YP; Wong M; He JF; Huang ZM
    Med Eng Phys; 2012 May; 34(4):506-11. PubMed ID: 22137374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in length of the plantar aponeurosis during the stance phase of gait--an in vivo dynamic fluoroscopic study.
    Fessel G; Jacob HA; Wyss Ch; Mittlmeier T; Müller-Gerbl M; Büttner A
    Ann Anat; 2014 Dec; 196(6):471-8. PubMed ID: 25113063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and reliability testing of a portable soft tissue indentor.
    Klaesner JW; Commean PK; Hastings MK; Zou D; Mueller MJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):232-40. PubMed ID: 11474976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plantar soft tissue thickness during ground contact in walking.
    Cavanagh PR
    J Biomech; 1999 Jun; 32(6):623-8. PubMed ID: 10332627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrasound based non-invasive method for the measurement of intrinsic foot kinematics during gait.
    Telfer S; Woodburn J; Turner DE
    J Biomech; 2014 Mar; 47(5):1225-8. PubMed ID: 24433670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlates between kinematics and baropodometric measurements for an integrated in-vivo assessment of the segmental foot function in gait.
    Giacomozzi C; Leardini A; Caravaggi P
    J Biomech; 2014 Aug; 47(11):2654-9. PubMed ID: 24935170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.
    Chang R; Rodrigues PA; Van Emmerik RE; Hamill J
    J Biomech; 2014 Aug; 47(11):2571-7. PubMed ID: 24992816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An innovative ultrasound foot scanner system for measuring the change in biomechanical properties of plantar tissue from sitting to standing.
    Ng TK; Zheng YP; Kwan RL; Cheing GL
    Int J Rehabil Res; 2015 Mar; 38(1):68-73. PubMed ID: 25426574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of antipronation foot orthosis geometry on compression of heel and arch soft tissues.
    Sweeney D; Nester C; Preece S; Mickle K
    J Rehabil Res Dev; 2015; 52(5):543-51. PubMed ID: 26465089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of gait cadence on the ground reaction forces and plantar pressures during load carriage of young adults.
    Castro MP; Figueiredo MC; Abreu S; Sousa H; Machado L; Santos R; Vilas-Boas JP
    Appl Ergon; 2015 Jul; 49():41-6. PubMed ID: 25766421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical models to assess foot-ground interaction: an overview.
    Naemi R; Chockalingam N
    Med Sci Sports Exerc; 2013 Aug; 45(8):1524-33. PubMed ID: 23863546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sock on biomechanical responses of foot during walking.
    Dai XQ; Li Y; Zhang M; Cheung JT
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):314-21. PubMed ID: 16298465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Froude number fractions to increase walking pattern dynamic similarities: application to plantar pressure study in healthy subjects.
    Moretto P; Bisiaux M; Lafortune MA
    Gait Posture; 2007 Jan; 25(1):40-8. PubMed ID: 16434196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.