These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 26343262)
1. Vapor Phase Alkyne Coating of Pharmaceutical Excipients: Discrimination Enhancement of Raman Chemical Imaging for Tablets. Yamashita M; Sasaki H; Moriyama K J Pharm Sci; 2015 Dec; 104(12):4093-4098. PubMed ID: 26343262 [TBL] [Abstract][Full Text] [Related]
2. Visualization of Protonation/Deprotonation of Active Pharmaceutical Ingredient in Solid State by Vapor Phase Amine-Selective Alkyne Tagging and Raman Imaging. Moriyama K; Yasuhara Y; Ota H J Pharm Sci; 2017 Jul; 106(7):1778-1785. PubMed ID: 28322938 [TBL] [Abstract][Full Text] [Related]
3. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. Kunnath K; Huang Z; Chen L; Zheng K; Davé R Int J Pharm; 2018 May; 543(1-2):288-299. PubMed ID: 29625168 [TBL] [Abstract][Full Text] [Related]
4. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose. Chen L; Ding X; He Z; Huang Z; Kunnath KT; Zheng K; Davé RN Int J Pharm; 2018 Jan; 536(1):127-137. PubMed ID: 29191481 [TBL] [Abstract][Full Text] [Related]
5. Application of independent component analysis on Raman images of a pharmaceutical drug product: pure spectra determination and spatial distribution of constituents. Boiret M; Rutledge DN; Gorretta N; Ginot YM; Roger JM J Pharm Biomed Anal; 2014 Mar; 90():78-84. PubMed ID: 24333706 [TBL] [Abstract][Full Text] [Related]
6. Prediction of dissolution time and coating thickness of sustained release formulations using Raman spectroscopy and terahertz pulsed imaging. Müller J; Brock D; Knop K; Axel Zeitler J; Kleinebudde P Eur J Pharm Biopharm; 2012 Apr; 80(3):690-7. PubMed ID: 22245221 [TBL] [Abstract][Full Text] [Related]
7. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. Lin SY; Lin KH; Li MJ J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050 [TBL] [Abstract][Full Text] [Related]
8. Quantitative polymorph contaminant analysis in tablets using Raman and near infra-red spectroscopies. Hennigan MC; Ryder AG J Pharm Biomed Anal; 2013 Jan; 72():163-71. PubMed ID: 23146243 [TBL] [Abstract][Full Text] [Related]
9. Hyperspectral Raman Line Mapping as an Effective Tool To Monitor the Coating Thickness of Pharmaceutical Tablets. Song SW; Kim J; Eum C; Cho Y; Park CR; Woo YA; Kim HM; Chung H Anal Chem; 2019 May; 91(9):5810-5816. PubMed ID: 30916927 [TBL] [Abstract][Full Text] [Related]
10. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression. Capece M; Huang Z; Davé R J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431 [TBL] [Abstract][Full Text] [Related]
11. New designed special cells for Raman mapping of the disintegration process of pharmaceutical tablets. Čapková-Helešicová T; Pekárek T; Schöngut M; Matějka P J Pharm Biomed Anal; 2019 May; 168():113-123. PubMed ID: 30802750 [TBL] [Abstract][Full Text] [Related]
12. Analytical approaches to investigate salt disproportionation in tablet matrices by Raman spectroscopy and Raman mapping. Nie H; Liu Z; Marks BC; Taylor LS; Byrn SR; Marsac PJ J Pharm Biomed Anal; 2016 Jan; 118():328-337. PubMed ID: 26590700 [TBL] [Abstract][Full Text] [Related]
13. Influence of moisture variation on the performance of Raman spectroscopy in quantitative pharmaceutical analyses. Hossain MN; Igne B; Anderson CA; Drennen JK J Pharm Biomed Anal; 2019 Feb; 164():528-535. PubMed ID: 30458386 [TBL] [Abstract][Full Text] [Related]
14. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Domínguez-Robles J; Stewart SA; Rendl A; González Z; Donnelly RF; Larrañeta E Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31466387 [TBL] [Abstract][Full Text] [Related]
15. Analysis of counterfeit Cialis® tablets using Raman microscopy and multivariate curve resolution. Kwok K; Taylor LS J Pharm Biomed Anal; 2012 Jul; 66():126-35. PubMed ID: 22494518 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging. Niwa M; Hiraishi Y Int J Pharm; 2014 Jan; 461(1-2):342-50. PubMed ID: 24300215 [TBL] [Abstract][Full Text] [Related]
17. Optimization of a pharmaceutical tablet formulation based on a design space approach and using vibrational spectroscopy as PAT tool. Chavez PF; Lebrun P; Sacré PY; De Bleye C; Netchacovitch L; Cuypers S; Mantanus J; Motte H; Schubert M; Evrard B; Hubert P; Ziemons E Int J Pharm; 2015; 486(1-2):13-20. PubMed ID: 25791761 [TBL] [Abstract][Full Text] [Related]
18. Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets. Neuberger S; Neusüß C J Pharm Biomed Anal; 2015 Aug; 112():70-8. PubMed ID: 25956227 [TBL] [Abstract][Full Text] [Related]
19. Multispectral UV imaging for surface analysis of MUPS tablets with special focus on the pellet distribution. Novikova A; Carstensen JM; Rades T; Leopold PDCS Int J Pharm; 2016 Dec; 515(1-2):374-383. PubMed ID: 27702695 [TBL] [Abstract][Full Text] [Related]
20. Crystalline phase transition of ezetimibe in final product, after packing, promoted by the humidity of excipients: Monitoring and quantification by Raman spectroscopy. Farias MADS; Soares FLF; Carneiro RL J Pharm Biomed Anal; 2016 Mar; 121():209-214. PubMed ID: 26812479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]