These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 26343322)

  • 1. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study.
    Zhang C; Pugh KR; Mencl WE; Molfese PJ; Frost SJ; Magnuson JS; Peng G; Wang WS
    Neuroimage; 2016 Jan; 124(Pt A):536-549. PubMed ID: 26343322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Talker normalization in typical Cantonese-speaking listeners and congenital amusics: Evidence from event-related potentials.
    Shao J; Zhang C
    Neuroimage Clin; 2019; 23():101814. PubMed ID: 30978657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies.
    Alho K; Rinne T; Herron TJ; Woods DL
    Hear Res; 2014 Jan; 307():29-41. PubMed ID: 23938208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training-induced brain activation and functional connectivity differentiate multi-talker and single-talker speech training.
    Deng Z; Chandrasekaran B; Wang S; Wong PCM
    Neurobiol Learn Mem; 2018 May; 151():1-9. PubMed ID: 29535043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural bases of congenital amusia in tonal language speakers.
    Zhang C; Peng G; Shao J; Wang WS
    Neuropsychologia; 2017 Mar; 97():18-28. PubMed ID: 28153640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving constancy in spoken word identification: time course of talker normalization.
    Zhang C; Peng G; Wang WS
    Brain Lang; 2013 Aug; 126(2):193-202. PubMed ID: 23792769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of posterior parietal and dorsal premotor cortices in relative pitch processing: Comparing musical intervals to lexical tones.
    Tsai CG; Chou TL; Li CW
    Neuropsychologia; 2018 Oct; 119():118-127. PubMed ID: 30056054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voice-sensitive brain networks encode talker-specific phonetic detail.
    Myers EB; Theodore RM
    Brain Lang; 2017 Feb; 165():33-44. PubMed ID: 27898342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unequal effects of speech and nonspeech contexts on the perceptual normalization of Cantonese level tones.
    Zhang C; Peng G; Wang WS
    J Acoust Soc Am; 2012 Aug; 132(2):1088-99. PubMed ID: 22894228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemispheric specialization for processing auditory nonspeech stimuli.
    Jamison HL; Watkins KE; Bishop DV; Matthews PM
    Cereb Cortex; 2006 Sep; 16(9):1266-75. PubMed ID: 16280465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Relationship Between General Auditory Sensitivity and Speech Perception: An Examination of Pitch and Lexical Tone Perception in 4- to 6-Year-Old Children.
    Wong P; Cheng MW
    J Speech Lang Hear Res; 2020 Feb; 63(2):487-498. PubMed ID: 32073343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of language experience and stimulus context on the neural organization and categorical perception of speech.
    Bidelman GM; Lee CC
    Neuroimage; 2015 Oct; 120():191-200. PubMed ID: 26146197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.
    Gu F; Zhang C; Hu A; Zhao G
    Neuroimage; 2013 Dec; 83():637-45. PubMed ID: 23856710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory-motor networks involved in speech production and motor control: an fMRI study.
    Behroozmand R; Shebek R; Hansen DR; Oya H; Robin DA; Howard MA; Greenlee JD
    Neuroimage; 2015 Apr; 109():418-28. PubMed ID: 25623499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of pitch type and lexicality in the hemispheric lateralization for lexical tone processing: An ERP study.
    Yu K; Chen Y; Yin S; Li L; Wang R
    Int J Psychophysiol; 2022 Jul; 177():83-91. PubMed ID: 35533781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Words Get in the Way: Linguistic Effects on Talker Discrimination.
    Narayan CR; Mak L; Bialystok E
    Cogn Sci; 2017 Jul; 41(5):1361-1376. PubMed ID: 27445079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of intonation and lexical tone in tonal and non-tonal language speakers.
    Chien PJ; Friederici AD; Hartwigsen G; Sammler D
    Hum Brain Mapp; 2020 May; 41(7):1842-1858. PubMed ID: 31957928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural bases of the lexical effect: an fMRI investigation.
    Myers EB; Blumstein SE
    Cereb Cortex; 2008 Feb; 18(2):278-88. PubMed ID: 17504782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributional learning for speech reflects cumulative exposure to a talker's phonetic distributions.
    Theodore RM; Monto NR
    Psychon Bull Rev; 2019 Jun; 26(3):985-992. PubMed ID: 30604404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Talker familiarity and the accommodation of talker variability.
    Magnuson JS; Nusbaum HC; Akahane-Yamada R; Saltzman D
    Atten Percept Psychophys; 2021 May; 83(4):1842-1860. PubMed ID: 33398658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.