These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26343431)

  • 1. Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions.
    Chen L; He H; Xu X; Jin Y
    Anal Chim Acta; 2015 Aug; 889():98-105. PubMed ID: 26343431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive and regenerable nanopore sensing based on target induced aptamer dissociation.
    Zhang S; Chai H; Cheng K; Song L; Chen W; Yu L; Lu Z; Liu B; Zhao YD
    Biosens Bioelectron; 2020 Mar; 152():112011. PubMed ID: 32056734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed ionic current sensing with glass nanopores.
    Bell NA; Thacker VV; Hernández-Ainsa S; Fuentes-Perez ME; Moreno-Herrero F; Liedl T; Keyser UF
    Lab Chip; 2013 May; 13(10):1859-62. PubMed ID: 23563625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Nanochannel-Ionchannel Hybrid for Ultrasensitive and Label-Free Detection of Copper Ions in Blood.
    Zhao XP; Wang SS; Younis MR; Xia XH; Wang C
    Anal Chem; 2018 Jan; 90(1):896-902. PubMed ID: 29182266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass Nanopore Detection of Copper Ions in Single Cells Based on Click Chemistry.
    Hu P; Wang Y; Zhang Y; Jin Y
    Anal Chem; 2022 Oct; 94(41):14273-14279. PubMed ID: 36197035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore detection of copper ions using a polyhistidine probe.
    Wang G; Wang L; Han Y; Zhou S; Guan X
    Biosens Bioelectron; 2014 Mar; 53():453-8. PubMed ID: 24211457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Molecule Translocation Conformational Sensing of Multiarm DNA Concatemers Using Glass Capillary Nanopore.
    Zhou Y; Wu R; Wang D; Hu P; Jin Y
    ACS Sens; 2019 Dec; 4(12):3119-3123. PubMed ID: 31797666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glass Capillary-Based Nanopores for Single Molecule/Single Cell Detection.
    Guan X; Li H; Chen L; Qi G; Jin Y
    ACS Sens; 2023 Feb; 8(2):427-442. PubMed ID: 36670058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule porphyrin-metal ion interaction and sensing application.
    Wei K; Yao F; Kang XF
    Biosens Bioelectron; 2018 Jun; 109():272-278. PubMed ID: 29571164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose level determination in single cells in their satiety and starvation states using an enzymatic functional glass nanopore.
    Wang D; Qi G; Zhou Y; Li H; Zhang Y; Xu C; Hu P; Jin Y
    Chem Commun (Camb); 2020 May; 56(40):5393-5396. PubMed ID: 32285901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.
    Cao S; Ding S; Liu Y; Zhu A; Shi G
    Anal Chem; 2017 Aug; 89(15):7886-7892. PubMed ID: 28675040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.
    Bafna JA; Soni GV
    PLoS One; 2016; 11(6):e0157399. PubMed ID: 27285088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores.
    Chen K; Bell NAW; Kong J; Tian Y; Keyser UF
    Biophys J; 2017 Feb; 112(4):674-682. PubMed ID: 28256227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversing current rectification to improve DNA-sensing sensitivity in conical nanopores.
    Cai XH; Cao SH; Cai SL; Wu YY; Ajmal M; Li YQ
    Electrophoresis; 2019 Aug; 40(16-17):2098-2103. PubMed ID: 31020667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface charge modulated aptasensor in a single glass conical nanopore.
    Cai SL; Cao SH; Zheng YB; Zhao S; Yang JL; Li YQ
    Biosens Bioelectron; 2015 Sep; 71():37-43. PubMed ID: 25884732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.
    Xu X; Li C; Zhou Y; Jin Y
    ACS Sens; 2017 Oct; 2(10):1452-1457. PubMed ID: 28971672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic-gated transport in chemically modified glass nanopore electrodes.
    Wang G; Zhang B; Wayment JR; Harris JM; White HS
    J Am Chem Soc; 2006 Jun; 128(23):7679-86. PubMed ID: 16756325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopore-Based Strategy for Sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction.
    Liu L; Fang Z; Zheng X; Xi D
    ACS Sens; 2019 May; 4(5):1323-1328. PubMed ID: 31050287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological Interactions.
    Lin Y; Ying YL; Gao R; Long YT
    Chemistry; 2018 Sep; 24(50):13064-13071. PubMed ID: 29577444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.