These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 26343530)

  • 1. In vivo models of cortical acquired epilepsy.
    Chauvette S; Soltani S; Seigneur J; Timofeev I
    J Neurosci Methods; 2016 Feb; 260():185-201. PubMed ID: 26343530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neocortical focus: experimental view.
    Timofeev I; Chauvette S; Soltani S
    Int Rev Neurobiol; 2014; 114():9-33. PubMed ID: 25078497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic strength modulation after cortical trauma: a role in epileptogenesis.
    Avramescu S; Timofeev I
    J Neurosci; 2008 Jul; 28(27):6760-72. PubMed ID: 18596152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and thalamic components of neocortical kindling-induced epileptogenesis in behaving cats.
    Nita DA; Cissé Y; Fröhlich F; Timofeev I
    Exp Neurol; 2008 Jun; 211(2):518-28. PubMed ID: 18423621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.
    Neckelmann D; Amzica F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1480-94. PubMed ID: 9744953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age dependency of trauma-induced neocortical epileptogenesis.
    Timofeev I; Sejnowski TJ; Bazhenov M; Chauvette S; Grand LB
    Front Cell Neurosci; 2013; 7():154. PubMed ID: 24065884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased epileptogenicity in a mouse model of neurofibromatosis type 1.
    Sabetghadam A; Wu C; Liu J; Zhang L; Reid AY
    Exp Neurol; 2020 Sep; 331():113373. PubMed ID: 32502580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis.
    Bragin A; Wilson CL; Engel J
    Epilepsia; 2000; 41 Suppl 6():S144-52. PubMed ID: 10999536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent slow outlasting activities following neocortical kindling in cats.
    Nita DA; Cissé Y; Timofeev I
    Exp Neurol; 2008 Jun; 211(2):456-68. PubMed ID: 18420200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Optogenetic Kindling Model of Neocortical Epilepsy.
    Cela E; McFarlan AR; Chung AJ; Wang T; Chierzi S; Murai KK; Sjöström PJ
    Sci Rep; 2019 Mar; 9(1):5236. PubMed ID: 30918286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between two feline epilepsy models in sleep and waking state disorders, state dependency of seizures and seizure susceptibility: amygdala kindling interferes with systemic penicillin epilepsy.
    Shouse MN
    Epilepsia; 1987; 28(4):399-408. PubMed ID: 3113927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the piriform cortex in kindling.
    Löscher W; Ebert U
    Prog Neurobiol; 1996 Dec; 50(5-6):427-81. PubMed ID: 9015822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traumatic brain injury accelerates kindling epileptogenesis in rats.
    Eslami M; Ghanbari E; Sayyah M; Etemadi F; Choopani S; Soleimani M; Amiri Z; Hadjighassem M
    Neurol Res; 2016 Mar; 38(3):269-74. PubMed ID: 26315855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An animal model of genetic predisposition to develop acquired epileptogenesis: The FAST and SLOW rats.
    Leung WL; Casillas-Espinosa P; Sharma P; Perucca P; Powell K; O'Brien TJ; Semple BD
    Epilepsia; 2019 Oct; 60(10):2023-2036. PubMed ID: 31468516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audiogenic kindling and secondary subcortico-cortical epileptogenesis: Behavioral correlates and electrographic features.
    Vinogradova LV
    Epilepsy Behav; 2017 Jun; 71(Pt B):142-153. PubMed ID: 26148984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in long-range connectivity and neuronal reorganization in partial cortical deafferentation model of epileptogenesis.
    Kuśmierczak M; Lajeunesse F; Grand L; Timofeev I
    Neuroscience; 2015 Jan; 284():153-164. PubMed ID: 25304932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of amygdala kindling on neuronal firing patterns in the lateral thalamus in the GAERS model of absence epilepsy.
    Çarçak N; Zheng T; Ali I; Abdullah A; French C; Powell KL; Jones NC; van Raay L; Rind G; Onat F; O'Brien TJ
    Epilepsia; 2014 May; 55(5):654-665. PubMed ID: 24673730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.