These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26343572)

  • 41. Products distribution and interaction mechanism during co-pyrolysis of rice husk and oily sludge by experiments and reaction force field simulation.
    Wen Y; Xie Y; Jiang C; Li W; Hou Y
    Bioresour Technol; 2021 Jun; 329():124822. PubMed ID: 33631453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions.
    Gai C; Dong Y; Zhang T
    Bioresour Technol; 2013 Jan; 127():298-305. PubMed ID: 23138056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uncertainty estimation approach in catalytic fast pyrolysis of rice husk: Thermal degradation, kinetic and thermodynamic parameters study.
    Loy ACM; Yusup S; How BS; Yiin CL; Chin BLF; Muhammad M; Gwee YL
    Bioresour Technol; 2019 Dec; 294():122089. PubMed ID: 31526932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis.
    Chihobo CH; Chowdhury A; Kuipa PK; Simbi DJ
    Waste Manag Res; 2016 Dec; 34(12):1258-1267. PubMed ID: 27729402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-heating co-pyrolysis of excessive activated sludge with waste biomass: energy balance and sludge reduction.
    Ding HS; Jiang H
    Bioresour Technol; 2013 Apr; 133():16-22. PubMed ID: 23410532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS.
    Zhang J; Sekyere DT; Niwamanya N; Huang Y; Barigye A; Tian Y
    ACS Omega; 2022 Feb; 7(5):4245-4256. PubMed ID: 35155917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermogravimetry and Py-GC/MS techniques as fast qualitative methods for comparing the biochemical composition of Nannochloropsis oculata samples obtained under different culture conditions.
    Valdés F; Catalá L; Hernández MR; García-Quesada JC; Marcilla A
    Bioresour Technol; 2013 Mar; 131():86-93. PubMed ID: 23340106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation on the formations of volatile compounds, fatty acids, and γ-lactones in white and brown rice during fermentation.
    Lee SM; Lim HJ; Chang JW; Hurh BS; Kim YS
    Food Chem; 2018 Dec; 269():347-354. PubMed ID: 30100445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis.
    He Q; Ding L; Gong Y; Li W; Wei J; Yu G
    Bioresour Technol; 2019 May; 280():104-111. PubMed ID: 30763862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microwave torrefaction of rice straw and Pennisetum.
    Huang YF; Chen WR; Chiueh PT; Kuan WH; Lo SL
    Bioresour Technol; 2012 Nov; 123():1-7. PubMed ID: 22929739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic.
    Tian X; Dai L; Wang Y; Zeng Z; Zhang S; Jiang L; Yang X; Yue L; Liu Y; Ruan R
    Bioresour Technol; 2020 Feb; 297():122490. PubMed ID: 31812595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influences of the Reaction Temperature and Catalysts on the Pyrolysis Product Distribution of Lignocellulosic Biomass (Aspen Wood and Rice Husk).
    Sun T; Chen Z; Wang R; Yang Y; Zhang L; Li Y; Liu P; Lei T
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non isothermal model free kinetics for pyrolysis of rice straw.
    Mishra G; Bhaskar T
    Bioresour Technol; 2014 Oct; 169():614-621. PubMed ID: 25105267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating.
    Chen WH; Ye SC; Sheen HK
    Bioresour Technol; 2012 Aug; 118():195-203. PubMed ID: 22705524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Value added liquid products from waste biomass pyrolysis using pretreatments.
    Das O; Sarmah AK
    Sci Total Environ; 2015 Dec; 538():145-51. PubMed ID: 26298257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pyrolysis kinetics and pyrolysate composition analysis of Mesua ferrea L: A non-edible oilseed towards the production of sustainable renewable fuel.
    Komandur J; Vinu R; Mohanty K
    Bioresour Technol; 2022 May; 351():126987. PubMed ID: 35292381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of geosmin as source of earthy odor in different aroma type Chinese liquors.
    Du H; Fan W; Xu Y
    J Agric Food Chem; 2011 Aug; 59(15):8331-7. PubMed ID: 21662241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs.
    Zheng A; Zhao Z; Chang S; Huang Z; Wang X; He F; Li H
    Bioresour Technol; 2013 Jan; 128():370-7. PubMed ID: 23201517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS.
    Volli V; Gollakota ARK; Shu CM
    Sci Total Environ; 2021 Oct; 792():148392. PubMed ID: 34147787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.