BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26343615)

  • 1. Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis.
    Žabka M; Šebesta R
    Molecules; 2015 Aug; 20(9):15500-24. PubMed ID: 26343615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squaramides: bridging from molecular recognition to bifunctional organocatalysis.
    Alemán J; Parra A; Jiang H; Jørgensen KA
    Chemistry; 2011 Jun; 17(25):6890-9. PubMed ID: 21590822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.
    Li P; Hu X; Dong XQ; Zhang X
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral amine-thioureas bearing multiple hydrogen bonding donors: highly efficient organocatalysts for asymmetric Michael addition of acetylacetone to nitroolefins.
    Wang CJ; Zhang ZH; Dong XQ; Wu XJ
    Chem Commun (Camb); 2008 Mar; (12):1431-3. PubMed ID: 18338046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinine-derived thiourea and squaramide catalyzed conjugate addition of α-nitrophosphonates to enones: asymmetric synthesis of quaternary α-aminophosphonates.
    Bera K; Namboothiri IN
    J Org Chem; 2015 Feb; 80(3):1402-13. PubMed ID: 25569800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of bifunctional squaramide-catalyzed organocatalytic Michael addition: a protonated catalyst as an oxyanion hole.
    Kótai B; Kardos G; Hamza A; Farkas V; Pápai I; Soós T
    Chemistry; 2014 May; 20(19):5631-9. PubMed ID: 24677388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-compatible hydrogen-bond activation: a scalable and organocatalytic model for the stereoselective multicomponent aza-Henry reaction.
    Cruz-Acosta F; de Armas P; García-Tellado F
    Chemistry; 2013 Dec; 19(49):16550-4. PubMed ID: 24281805
    [No Abstract]   [Full Text] [Related]  

  • 8. Organocatalytic stereoselective mannich reaction of 3-substituted oxindoles.
    Tian X; Jiang K; Peng J; Du W; Chen YC
    Org Lett; 2008 Aug; 10(16):3583-6. PubMed ID: 18642826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double diastereocontrol in bifunctional thiourea organocatalysis: iterative Michael-Michael-Henry sequence regulated by the configuration of chiral catalysts.
    Varga S; Jakab G; Drahos L; Holczbauer T; Czugler M; Soós T
    Org Lett; 2011 Oct; 13(20):5416-9. PubMed ID: 21916428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C-C bond formation.
    Hamza A; Schubert G; Soós T; Papai I
    J Am Chem Soc; 2006 Oct; 128(40):13151-60. PubMed ID: 17017795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of the enantioselectivity in organocatalytic Michael additions of β-ketoamides to α,β-unsaturated carbonyls: a combined experimental, spectroscopic and theoretical study.
    Quintard A; Cheshmedzhieva D; Sanchez Duque Mdel M; Gaudel-Siri A; Naubron JV; Génisson Y; Plaquevent JC; Bugaut X; Rodriguez J; Constantieux T
    Chemistry; 2015 Jan; 21(2):778-90. PubMed ID: 25382666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral Thioureas-Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry.
    Steppeler F; Iwan D; Wojaczyńska E; Wojaczyński J
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of Green Asymmetric Organocatalytic Synthesis].
    Hirashima SI
    Yakugaku Zasshi; 2021; 141(10):1137-1145. PubMed ID: 34602510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric indoline synthesis via intramolecular aza-Michael addition mediated by bifunctional organocatalysts.
    Miyaji R; Asano K; Matsubara S
    Org Lett; 2013 Jul; 15(14):3658-61. PubMed ID: 23844669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminocatalysts are More Environmentally Friendly than Hydrogen-Bonding Catalysts.
    Sihtmäe M; Silm E; Kriis K; Kahru A; Kanger T
    ChemSusChem; 2022 Aug; 15(16):e202201045. PubMed ID: 35686861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative thiourea-Brønsted acid organocatalysis: enantioselective cyanosilylation of aldehydes with TMSCN.
    Zhang Z; Lippert KM; Hausmann H; Kotke M; Schreiner PR
    J Org Chem; 2011 Dec; 76(23):9764-76. PubMed ID: 22011108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctional hydrogen-bond donors that bear a quinazoline or benzothiadiazine skeleton for asymmetric organocatalysis.
    Inokuma T; Furukawa M; Uno T; Suzuki Y; Yoshida K; Yano Y; Matsuzaki K; Takemoto Y
    Chemistry; 2011 Sep; 17(37):10470-7. PubMed ID: 21812044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the superior performance of (thio)squaramides over (thio)ureas in organocatalysis.
    Lu T; Wheeler SE
    Chemistry; 2013 Nov; 19(45):15141-7. PubMed ID: 24127275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New bifunctional 1,3-diamine organocatalysts derived from (+)-camphoric acid for asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroolefins.
    Rénio M; Murtinho D; Ventura MR
    Chirality; 2022 May; 34(5):782-795. PubMed ID: 35166402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric Michael Addition Organocatalyzed by α,β-Dipeptides under Solvent-Free Reaction Conditions.
    Avila-Ortiz CG; Díaz-Corona L; Jiménez-González E; Juaristi E
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28796165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.