BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26343636)

  • 21. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ambient lithium-SO2 batteries with ionic liquids as electrolytes.
    Xing H; Liao C; Yang Q; Veith GM; Guo B; Sun XG; Ren Q; Hu YS; Dai S
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2099-103. PubMed ID: 24446427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries.
    Wang H; Wu J; Cai C; Guo J; Fan H; Zhu C; Dong H; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5602-8. PubMed ID: 24684271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries.
    Wang SH; Hou SS; Kuo PL; Teng H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery.
    Chen W; Shi L; Wang Z; Zhu J; Yang H; Mao X; Chi M; Sun L; Yuan S
    Carbohydr Polym; 2016 Aug; 147():517-524. PubMed ID: 27178959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries.
    Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries.
    Ryou MH; Lee YM; Park JK; Choi JW
    Adv Mater; 2011 Jul; 23(27):3066-70. PubMed ID: 21608049
    [No Abstract]   [Full Text] [Related]  

  • 29. Layer-by-Layer Deposition of Organic-Inorganic Hybrid Multilayer on Microporous Polyethylene Separator to Enhance the Electrochemical Performance of Lithium-Ion Battery.
    Xu W; Wang Z; Shi L; Ma Y; Yuan S; Sun L; Zhao Y; Zhang M; Zhu J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20678-86. PubMed ID: 26336109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte.
    Huang W; Zhu Z; Wang L; Wang S; Li H; Tao Z; Shi J; Guan L; Chen J
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9162-6. PubMed ID: 23825051
    [No Abstract]   [Full Text] [Related]  

  • 31. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing.
    Lee JZ; Wynn TA; Meng YS; Santhanagopalan D
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Stable Porous Polyimide Sponge as a Separator for Lithium-metal Secondary Batteries.
    Choi J; Yang K; Bae HS; Phiri I; Ahn HJ; Won JC; Lee YM; Kim YH; Ryou MH
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33036223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.
    Huie MM; DiLeo RA; Marschilok AC; Takeuchi KJ; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11724-31. PubMed ID: 25710110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile fabrication of regenerated cellulose-based separators for high-performance lithium-ion batteries by regulating degrees of polymerization.
    Hu Z; Liu Q; Zhang Q; Zhang J; Chen L; Xu S
    Int J Biol Macromol; 2024 May; 268(Pt 2):131854. PubMed ID: 38677683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic Liquids in Lithium-Ion Batteries.
    Balducci A
    Top Curr Chem (Cham); 2017 Apr; 375(2):20. PubMed ID: 28155139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitated ion diffusion in multiscale porous particles: application in battery separators.
    Kim YB; Tran-Phu T; Kim M; Jung DW; Yi GR; Park JH
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4511-7. PubMed ID: 25594365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries.
    Yan M; Qu W; Su Q; Chen S; Xing Y; Huang Y; Chen N; Li Y; Li L; Wu F; Chen R
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13950-13958. PubMed ID: 32125148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.
    Carbone L; Gobet M; Peng J; Devany M; Scrosati B; Greenbaum S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13859-65. PubMed ID: 26057152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.
    Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL
    Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction.
    Kim YS; Cho YG; Odkhuu D; Park N; Song HK
    Sci Rep; 2013; 3():1917. PubMed ID: 23715177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.