BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 26343991)

  • 1. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.
    Franca RD; Vieira A; Mata AM; Carvalho GS; Pinheiro HM; Lourenço ND
    Water Res; 2015 Nov; 85():327-36. PubMed ID: 26343991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.
    Franca RDG; Ortigueira J; Pinheiro HM; Lourenço ND
    Water Sci Technol; 2017 Sep; 76(5-6):1188-1195. PubMed ID: 28876260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite.
    Franca RDG; Vieira A; Carvalho G; Oehmen A; Pinheiro HM; Barreto Crespo MT; Lourenço ND
    Ecotoxicol Environ Saf; 2020 Mar; 191():110007. PubMed ID: 31796253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.
    Yan LKQ; Fung KY; Ng KM
    Environ Technol; 2018 Jun; 39(11):1368-1375. PubMed ID: 28488938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing anaerobic substrate distribution for growth of aerobic granular sludge in continuous-flow reactors.
    Haaksman VA; van Dijk EJH; Al-Zuhairy S; Mulders M; Loosdrecht MCMV; Pronk M
    Water Res; 2024 Jun; 257():121531. PubMed ID: 38701553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents.
    Santorio S; Couto AT; Amorim CL; Val Del Rio A; Arregui L; Mosquera-Corral A; Castro PML
    Water Res; 2021 Aug; 201():117293. PubMed ID: 34146761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater.
    Zhu Y; Wang W; Ni J; Hu B
    Chemosphere; 2020 May; 246():125753. PubMed ID: 31901528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors.
    Sarvajith M; Reddy GKK; Nancharaiah YV
    J Hazard Mater; 2018 Jan; 342():536-543. PubMed ID: 28886566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume.
    Derlon N; Wagner J; da Costa RHR; Morgenroth E
    Water Res; 2016 Nov; 105():341-350. PubMed ID: 27639343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.
    Sirianuntapiboon S; Sadahiro O; Salee P
    J Environ Manage; 2007 Oct; 85(1):162-70. PubMed ID: 17046148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater.
    Cetin E; Karakas E; Dulekgurgen E; Ovez S; Kolukirik M; Yilmaz G
    Water Res; 2018 Mar; 131():74-89. PubMed ID: 29275102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals.
    Hu Z; Ferraina RA; Ericson JF; Mackay AA; Smets BF
    Water Res; 2005 Feb; 39(4):710-20. PubMed ID: 15707644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 454-Pyrosequencing analysis of highly adapted azo dye-degrading microbial communities in a two-stage anaerobic-aerobic bioreactor treating textile effluent.
    Köchling T; Ferraz AD; Florencio L; Kato MT; Gavazza S
    Environ Technol; 2017 Mar; 38(6):687-693. PubMed ID: 27384498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of secondary metabolite fate during anaerobic-aerobic azo dye biodegradation in a sequential batch reactor.
    Lourenço ND; Novais JM; Pinheiro HM
    Environ Technol; 2003 Jun; 24(6):679-86. PubMed ID: 12868522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of aerobic granular sludge at variable circulation rate in anaerobic-aerobic conditions.
    Harun H; Anuar AN; Ujang Z; Rosman NH; Othman I
    Water Sci Technol; 2014; 69(11):2252-7. PubMed ID: 24901619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor.
    Ozdemir S; Cirik K; Akman D; Sahinkaya E; Cinar O
    Bioresour Technol; 2013 Oct; 146():135-143. PubMed ID: 23933020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of granular sludge for textile wastewater treatment.
    Muda K; Aris A; Salim MR; Ibrahim Z; Yahya A; van Loosdrecht MC; Ahmad A; Nawahwi MZ
    Water Res; 2010 Aug; 44(15):4341-50. PubMed ID: 20580402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic retention time influence on azo dye and sulfate removal during the sequential anaerobic-aerobic treatment of real textile wastewater.
    Amaral FM; Florêncio L; Kato MT; Santa-Cruz PA; Gavazza S
    Water Sci Technol; 2017 Dec; 76(11-12):3319-3327. PubMed ID: 29236011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decolorization of azo-reactive dye by polyphosphate- and glycogen-accumulating organisms in an anaerobic-aerobic sequencing batch reactor.
    Panswad T; Iamsamer K; Anotai J
    Bioresour Technol; 2001 Jan; 76(2):151-9. PubMed ID: 11131799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.