BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 26344106)

  • 1. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae.
    Shin SY; Jung SM; Kim MD; Han NS; Seo JH
    Enzyme Microb Technol; 2012 Sep; 51(4):211-6. PubMed ID: 22883555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol.
    Becker JV; Armstrong GO; van der Merwe MJ; Lambrechts MG; Vivier MA; Pretorius IS
    FEMS Yeast Res; 2003 Oct; 4(1):79-85. PubMed ID: 14554199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased resveratrol production in wines using engineered wine strains Saccharomyces cerevisiae EC1118 and relaxed antibiotic or auxotrophic selection.
    Sun P; Liang JL; Kang LZ; Huang XY; Huang JJ; Ye ZW; Guo LQ; Lin JF
    Biotechnol Prog; 2015; 31(3):650-5. PubMed ID: 25683151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering yeast for high-level production of stilbenoid antioxidants.
    Li M; Schneider K; Kristensen M; Borodina I; Nielsen J
    Sci Rep; 2016 Nov; 6():36827. PubMed ID: 27833117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells.
    Zhang Y; Li SZ; Li J; Pan X; Cahoon RE; Jaworski JG; Wang X; Jez JM; Chen F; Yu O
    J Am Chem Soc; 2006 Oct; 128(40):13030-1. PubMed ID: 17017764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium.
    Sydor T; Schaffer S; Boles E
    Appl Environ Microbiol; 2010 May; 76(10):3361-3. PubMed ID: 20348297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae.
    Meng L; Diao M; Wang Q; Peng L; Li J; Xie N
    Microb Cell Fact; 2023 Mar; 22(1):46. PubMed ID: 36890537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M
    ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes.
    Shin SY; Han NS; Park YC; Kim MD; Seo JH
    Enzyme Microb Technol; 2011 Jan; 48(1):48-53. PubMed ID: 22112770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine.
    Wu J; Liu P; Fan Y; Bao H; Du G; Zhou J; Chen J
    J Biotechnol; 2013 Sep; 167(4):404-11. PubMed ID: 23916948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of resveratrol in recombinant microorganisms.
    Beekwilder J; Wolswinkel R; Jonker H; Hall R; de Vos CH; Bovy A
    Appl Environ Microbiol; 2006 Aug; 72(8):5670-2. PubMed ID: 16885328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae.
    Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH
    J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.