BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 26344199)

  • 1. Structure of mammalian eIF3 in the context of the 43S preinitiation complex.
    des Georges A; Dhote V; Kuhn L; Hellen CU; Pestova TV; Frank J; Hashem Y
    Nature; 2015 Sep; 525(7570):491-5. PubMed ID: 26344199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29.
    Hashem Y; des Georges A; Dhote V; Langlois R; Liao HY; Grassucci RA; Hellen CU; Pestova TV; Frank J
    Cell; 2013 May; 153(5):1108-19. PubMed ID: 23706745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition.
    Simonetti A; Brito Querido J; Myasnikov AG; Mancera-Martinez E; Renaud A; Kuhn L; Hashem Y
    Mol Cell; 2016 Jul; 63(2):206-217. PubMed ID: 27373335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit.
    Hashem Y; des Georges A; Dhote V; Langlois R; Liao HY; Grassucci RA; Pestova TV; Hellen CU; Frank J
    Nature; 2013 Nov; 503(7477):539-43. PubMed ID: 24185006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast.
    Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH
    Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons.
    Dong J; Aitken CE; Thakur A; Shin BS; Lorsch JR; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2126-E2135. PubMed ID: 28223523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular architecture of the 40S⋅eIF1⋅eIF3 translation initiation complex.
    Erzberger JP; Stengel F; Pellarin R; Zhang S; Schaefer T; Aylett CHS; Cimermančič P; Boehringer D; Sali A; Aebersold R; Ban N
    Cell; 2014 Aug; 158(5):1123-1135. PubMed ID: 25171412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3).
    Sun C; Todorovic A; Querol-Audí J; Bai Y; Villa N; Snyder M; Ashchyan J; Lewis CS; Hartland A; Gradia S; Fraser CS; Doudna JA; Nogales E; Cate JH
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20473-8. PubMed ID: 22135459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes.
    Kouba T; Rutkai E; Karásková M; Valášek L
    Nucleic Acids Res; 2012 Mar; 40(6):2683-99. PubMed ID: 22123745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo.
    Asano K; Clayton J; Shalev A; Hinnebusch AG
    Genes Dev; 2000 Oct; 14(19):2534-46. PubMed ID: 11018020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome.
    Villa N; Do A; Hershey JW; Fraser CS
    J Biol Chem; 2013 Nov; 288(46):32932-40. PubMed ID: 24092755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DHX29 and eIF3 cooperate in ribosomal scanning on structured mRNAs during translation initiation.
    Pisareva VP; Pisarev AV
    RNA; 2016 Dec; 22(12):1859-1870. PubMed ID: 27733651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The scanning mechanism of eukaryotic translation initiation.
    Hinnebusch AG
    Annu Rev Biochem; 2014; 83():779-812. PubMed ID: 24499181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of translation initiation in eukaryotes.
    Pestova TV; Kolupaeva VG; Lomakin IB; Pilipenko EV; Shatsky IN; Agol VI; Hellen CU
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7029-36. PubMed ID: 11416183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role and ribosomal position of the unique N-terminal region of DHX29, a factor required for initiation on structured mammalian mRNAs.
    Sweeney TR; Dhote V; Guca E; Hellen CUT; Hashem Y; Pestova TV
    Nucleic Acids Res; 2021 Dec; 49(22):12955-12969. PubMed ID: 34883515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a human cap-dependent 48S translation pre-initiation complex.
    Eliseev B; Yeramala L; Leitner A; Karuppasamy M; Raimondeau E; Huard K; Alkalaeva E; Aebersold R; Schaffitzel C
    Nucleic Acids Res; 2018 Mar; 46(5):2678-2689. PubMed ID: 29401259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex.
    Majumdar R; Bandyopadhyay A; Maitra U
    J Biol Chem; 2003 Feb; 278(8):6580-7. PubMed ID: 12493757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a human 48
    Brito Querido J; Sokabe M; Kraatz S; Gordiyenko Y; Skehel JM; Fraser CS; Ramakrishnan V
    Science; 2020 Sep; 369(6508):1220-1227. PubMed ID: 32883864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation.
    Sun C; Querol-Audí J; Mortimer SA; Arias-Palomo E; Doudna JA; Nogales E; Cate JH
    Nucleic Acids Res; 2013 Aug; 41(15):7512-21. PubMed ID: 23766293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal subunit is accompanied by dramatic structural changes.
    Zeman J; Itoh Y; Kukačka Z; Rosůlek M; Kavan D; Kouba T; Jansen ME; Mohammad MP; Novák P; Valášek LS
    Nucleic Acids Res; 2019 Sep; 47(15):8282-8300. PubMed ID: 31291455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.