These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 26344202)
1. Modulation of the Hydration Water Around Monoclonal Antibodies on Addition of Excipients Detected by Terahertz Time-Domain Spectroscopy. Wallace VP; Ferachou D; Ke P; Day K; Uddin S; Casas-Finet J; Van Der Walle CF; Falconer RJ; Zeitler JA J Pharm Sci; 2015 Dec; 104(12):4025-4033. PubMed ID: 26344202 [TBL] [Abstract][Full Text] [Related]
2. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies. Thakkar SV; Joshi SB; Jones ME; Sathish HA; Bishop SM; Volkin DB; Middaugh CR J Pharm Sci; 2012 Sep; 101(9):3062-77. PubMed ID: 22581714 [TBL] [Abstract][Full Text] [Related]
3. Effects of Histidine and Sucrose on the Biophysical Properties of a Monoclonal Antibody. Baek Y; Singh N; Arunkumar A; Zydney AL Pharm Res; 2017 Mar; 34(3):629-639. PubMed ID: 28035628 [TBL] [Abstract][Full Text] [Related]
4. Local dynamics and their alteration by excipients modulate the global conformational stability of an lgG1 monoclonal antibody. Thakkar SV; Kim JH; Samra HS; Sathish HA; Bishop SM; Joshi SB; Volkin DB; Middaugh CR J Pharm Sci; 2012 Dec; 101(12):4444-57. PubMed ID: 23060088 [TBL] [Abstract][Full Text] [Related]
5. Characterizing monoclonal antibody formulations in arginine glutamate solutions using Kheddo P; Cliff MJ; Uddin S; van der Walle CF; Golovanov AP MAbs; 2016 Oct; 8(7):1245-1258. PubMed ID: 27589351 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy. Shiraga K; Ogawa Y; Kondo N; Irisawa A; Imamura M Food Chem; 2013 Sep; 140(1-2):315-20. PubMed ID: 23578648 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Models of Antibody-Excipient Preferential Interactions for Use in Computational Formulation Design. Cloutier TK; Sudrik C; Mody N; Sathish HA; Trout BL Mol Pharm; 2020 Sep; 17(9):3589-3599. PubMed ID: 32794710 [TBL] [Abstract][Full Text] [Related]
8. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies. Wang S; Zhang N; Hu T; Dai W; Feng X; Zhang X; Qian F Mol Pharm; 2015 Dec; 12(12):4478-87. PubMed ID: 26528726 [TBL] [Abstract][Full Text] [Related]
9. The effect of residual moisture on a monoclonal antibody stability in L-arginine based lyophilisates. Seifert I; Friess W Eur J Pharm Biopharm; 2021 Jan; 158():53-61. PubMed ID: 33188928 [TBL] [Abstract][Full Text] [Related]
10. The effect of cosolutes on the isomerization of aspartic acid residues and conformational stability in a monoclonal antibody. Wakankar AA; Liu J; Vandervelde D; Wang YJ; Shire SJ; Borchardt RT J Pharm Sci; 2007 Jul; 96(7):1708-18. PubMed ID: 17238195 [TBL] [Abstract][Full Text] [Related]
11. Hydration Shells of DNA from the Point of View of Terahertz Time-Domain Spectroscopy. Penkova NA; Sharapov MG; Penkov NV Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681747 [TBL] [Abstract][Full Text] [Related]
12. Computational Characterization of Antibody-Excipient Interactions for Rational Excipient Selection Using the Site Identification by Ligand Competitive Saturation-Biologics Approach. Jo S; Xu A; Curtis JE; Somani S; MacKerell AD Mol Pharm; 2020 Nov; 17(11):4323-4333. PubMed ID: 32965126 [TBL] [Abstract][Full Text] [Related]
13. Elucidating the weak protein-protein interaction mechanisms behind the liquid-liquid phase separation of a mAb solution by different types of additives. Wu G; Wang S; Tian Z; Zhang N; Sheng H; Dai W; Qian F Eur J Pharm Biopharm; 2017 Nov; 120():1-8. PubMed ID: 28754261 [TBL] [Abstract][Full Text] [Related]
14. Estimation of crystallinity of trehalose dihydrate microspheres by usage of terahertz time-domain spectroscopy. Takeuchi I; Tomoda K; Nakajima T; Terada H; Kuroda H; Makino K J Pharm Sci; 2012 Sep; 101(9):3465-72. PubMed ID: 22499332 [TBL] [Abstract][Full Text] [Related]
15. Observation of high-temperature macromolecular confinement in lyophilised protein formulations using terahertz spectroscopy. Shmool TA; Woodhams PJ; Leutzsch M; Stephens AD; Gaimann MU; Mantle MD; Kaminski Schierle GS; van der Walle CF; Zeitler JA Int J Pharm X; 2019 Dec; 1():100022. PubMed ID: 31517287 [TBL] [Abstract][Full Text] [Related]
16. A Study of the Effect of a Protein on the Structure of Water in Solution Using Terahertz Time-Domain Spectroscopy. Penkov N; Yashin V; Fesenko E; Manokhin A; Fesenko E Appl Spectrosc; 2018 Feb; 72(2):257-267. PubMed ID: 28922934 [TBL] [Abstract][Full Text] [Related]
17. SELECTED ASPECTS OF TERAHERTZ SPECTROSCOPY IN PHARMACEUTICAL SCIENCES. Nowak K; Pliński EF; Karolewicz B; Jarząb PP; Plińska S; Fuglewicz B; Walczakowski MJ; Augustyn Ł; Sterczewsk ŁA; Grzelczak MP; Hruszowiec M; Beziuk G; Mikulic M; Pałka N; Szustakowskip M Acta Pol Pharm; 2015; 72(5):851-66. PubMed ID: 26665391 [TBL] [Abstract][Full Text] [Related]
18. Molecular Computations of Preferential Interaction Coefficients of IgG1 Monoclonal Antibodies with Sorbitol, Sucrose, and Trehalose and the Impact of These Excipients on Aggregation and Viscosity. Cloutier T; Sudrik C; Mody N; Sathish HA; Trout BL Mol Pharm; 2019 Aug; 16(8):3657-3664. PubMed ID: 31276620 [TBL] [Abstract][Full Text] [Related]
20. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System. Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]