BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26344235)

  • 1. In Vivo Delivery of Nitric Oxide-Sensing, Single-Walled Carbon Nanotubes.
    Iverson NM; Strano MS; Wogan GN
    Curr Protoc Chem Biol; 2015 Jun; 7(2):93-102. PubMed ID: 26344235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes.
    Zhang J; Boghossian AA; Barone PW; Rwei A; Kim JH; Lin D; Heller DA; Hilmer AJ; Nair N; Reuel NF; Strano MS
    J Am Chem Soc; 2011 Jan; 133(3):567-81. PubMed ID: 21142158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes.
    Iverson NM; Barone PW; Shandell M; Trudel LJ; Sen S; Sen F; Ivanov V; Atolia E; Farias E; McNicholas TP; Reuel N; Parry NM; Wogan GN; Strano MS
    Nat Nanotechnol; 2013 Nov; 8(11):873-80. PubMed ID: 24185942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection.
    Kim JH; Heller DA; Jin H; Barone PW; Song C; Zhang J; Trudel LJ; Wogan GN; Tannenbaum SR; Strano MS
    Nat Chem; 2009 Sep; 1(6):473-81. PubMed ID: 21378915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions.
    Zhao C; Qu K; Song Y; Xu C; Ren J; Qu X
    Chemistry; 2010 Jul; 16(27):8147-54. PubMed ID: 20512822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon nanotubes as optical materials for biosensing.
    Chen Z; Zhang X; Yang R; Zhu Z; Chen Y; Tan W
    Nanoscale; 2011 May; 3(5):1949-56. PubMed ID: 21409262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling.
    Reuel NF; Ahn JH; Kim JH; Zhang J; Boghossian AA; Mahal LK; Strano MS
    J Am Chem Soc; 2011 Nov; 133(44):17923-33. PubMed ID: 21970594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction.
    Kong L; Wang J; Luo T; Meng F; Chen X; Li M; Liu J
    Analyst; 2010 Feb; 135(2):368-74. PubMed ID: 20098772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in molecular recognition based on nanoengineered platforms.
    Mu B; Zhang J; McNicholas TP; Reuel NF; Kruss S; Strano MS
    Acc Chem Res; 2014 Apr; 47(4):979-88. PubMed ID: 24467652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring.
    Giraldo JP; Landry MP; Kwak SY; Jain RM; Wong MH; Iverson NM; Ben-Naim M; Strano MS
    Small; 2015 Aug; 11(32):3973-84. PubMed ID: 25981520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes for the label-free detection of biomarkers.
    Münzer AM; Michael ZP; Star A
    ACS Nano; 2013 Sep; 7(9):7448-53. PubMed ID: 24032561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes.
    Du F; Huang W; Shi Y; Wang Z; Cheng J
    Biosens Bioelectron; 2008 Nov; 24(3):415-21. PubMed ID: 18585028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay.
    Zhang L; Wei H; Li J; Li T; Li D; Li Y; Wang E
    Biosens Bioelectron; 2010 Apr; 25(8):1897-901. PubMed ID: 20106653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection.
    Chang J; Mao S; Zhang Y; Cui S; Steeber DA; Chen J
    Biosens Bioelectron; 2013 Apr; 42():186-92. PubMed ID: 23202350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor.
    Yang K; Zhang CY
    Biosens Bioelectron; 2011 Oct; 28(1):257-62. PubMed ID: 21816598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel methods to extract and quantify sensors based on single wall carbon nanotube fluorescence from animal tissue and hydrogel-based platforms.
    Hofferber E; Meier J; Herrera N; Stapleton J; Ney K; Francis B; Calkins C; Iverson N
    Methods Appl Fluoresc; 2021 Mar; 9(2):025005. PubMed ID: 33631740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes.
    Duque JG; Pasquali M; Cognet L; Lounis B
    ACS Nano; 2009 Aug; 3(8):2153-6. PubMed ID: 19594113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared optical sensors based on single-walled carbon nanotubes.
    Barone PW; Baik S; Heller DA; Strano MS
    Nat Mater; 2005 Jan; 4(1):86-92. PubMed ID: 15592477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanographite impurities in carbon nanotubes: their influence on the oxidation of insulin, nitric oxide, and extracellular thiols.
    Chng EL; Pumera M
    Chemistry; 2012 Jan; 18(5):1401-7. PubMed ID: 22213085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.