BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 26344243)

  • 1. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood.
    Wang H; Gao B; Wang S; Fang J; Xue Y; Yang K
    Bioresour Technol; 2015 Dec; 197():356-62. PubMed ID: 26344243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.
    Li B; Yang L; Wang CQ; Zhang QP; Liu QC; Li YD; Xiao R
    Chemosphere; 2017 May; 175():332-340. PubMed ID: 28235742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO
    Sun C; Chen T; Huang Q; Wang J; Lu S; Yan J
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8902-8913. PubMed ID: 30715697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method.
    Fan Z; Zhang Q; Li M; Niu D; Sang W; Verpoort F
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8330-8339. PubMed ID: 29305807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes.
    Bandara T; Xu J; Potter ID; Franks A; Chathurika JBAJ; Tang C
    Chemosphere; 2020 Sep; 254():126745. PubMed ID: 32315813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.
    Regmi P; Garcia Moscoso JL; Kumar S; Cao X; Mao J; Schafran G
    J Environ Manage; 2012 Oct; 109():61-9. PubMed ID: 22687632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II).
    Xiao J; Hu R; Chen G
    J Hazard Mater; 2020 Apr; 387():121980. PubMed ID: 31927255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.
    Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars.
    Peng H; Gao P; Chu G; Pan B; Peng J; Xing B
    Environ Pollut; 2017 Oct; 229():846-853. PubMed ID: 28779896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution.
    Khan ZH; Gao M; Qiu W; Islam MS; Song Z
    Chemosphere; 2020 May; 246():125701. PubMed ID: 31891847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications.
    Trakal L; Bingöl D; Pohořelý M; Hruška M; Komárek M
    Bioresour Technol; 2014 Nov; 171():442-51. PubMed ID: 25226061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution.
    Chen X; Chen G; Chen L; Chen Y; Lehmann J; McBride MB; Hay AG
    Bioresour Technol; 2011 Oct; 102(19):8877-84. PubMed ID: 21764299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium permanganate modification of hydrochar enhances sorption of Pb(II), Cu(II), and Cd(II).
    Zhang Y; Wan Y; Zheng Y; Yang Y; Huang J; Chen H; Quan G; Gao B
    Bioresour Technol; 2023 Oct; 386():129482. PubMed ID: 37451511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead and cadmium sorption mechanisms on magnetically modified biochars.
    Trakal L; Veselská V; Šafařík I; Vítková M; Číhalová S; Komárek M
    Bioresour Technol; 2016 Mar; 203():318-24. PubMed ID: 26748045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood.
    Shen Z; Jin F; Wang F; McMillan O; Al-Tabbaa A
    Bioresour Technol; 2015 Oct; 193():553-6. PubMed ID: 26141669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unlocking the potential of biochar: an iron-phosphorus-based composite modified adsorbent for adsorption of Pb(II) and Cd(II) in aqueous environments and response surface optimization of adsorption conditions.
    Li X; Chi Y; Ma F; Wang X; Du R; Wang Z; Dang X; Zhao C; Zhang Y; He S; Wang Y; Zhu T
    Environ Sci Pollut Res Int; 2024 May; 31(24):35688-35704. PubMed ID: 38740681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar.
    Deng J; Liu Y; Liu S; Zeng G; Tan X; Huang B; Tang X; Wang S; Hua Q; Yan Z
    J Colloid Interface Sci; 2017 Nov; 506():355-364. PubMed ID: 28750237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb
    Shi Q; Zhang H; Shahab A; Zeng H; Zeng H; Bacha AU; Nabi I; Siddique J; Ullah H
    Ecotoxicol Environ Saf; 2021 Sep; 221():112426. PubMed ID: 34166940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.