BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26344252)

  • 1. Reduction of silver (I) using defatted cashew nut shell starch and its structural comparison with commercial product.
    Velmurugan P; Park JH; Lee SM; Jang JS; Yi YJ; Han SS; Lee SH; Cho KM; Cho M; Oh BT
    Carbohydr Polym; 2015 Nov; 133():39-45. PubMed ID: 26344252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch.
    Vigneshwaran N; Nachane RP; Balasubramanya RH; Varadarajan PV
    Carbohydr Res; 2006 Sep; 341(12):2012-8. PubMed ID: 16716274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch-directed green synthesis, characterization and morphology of silver nanoparticles.
    Khan Z; Singh T; Hussain JI; Obaid AY; Al-Thabaiti SA; El-Mossalamy EH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():578-84. PubMed ID: 23104028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.
    Sadeghi B; Gholamhoseinpoor F
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():310-5. PubMed ID: 25022503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of silver nanoparticles using Delonix elata leaf broth.
    Sathiya CK; Akilandeswari S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():337-41. PubMed ID: 24681317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites.
    Cheviron P; Gouanvé F; Espuche E
    Carbohydr Polym; 2014 Aug; 108():291-8. PubMed ID: 24751276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.
    Naraginti S; Sivakumar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():357-62. PubMed ID: 24681320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofabrication of silver nanoparticles using Andrographis paniculata.
    Kotakadi VS; Gaddam SA; Subba Rao Y; Prasad TN; Varada Reddy A; Sai Gopal DV
    Eur J Med Chem; 2014 Feb; 73():135-40. PubMed ID: 24389508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization of silver through reduction process using Elaeis guineensis biosolid extract.
    Velmurugan P; Shim J; Kamala-Kannan S; Lee KJ; Oh BT; Balachandar V; Oh BT
    Biotechnol Prog; 2011; 27(1):273-9. PubMed ID: 21312374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of microbial growth by silver-starch nanocomposite thin films.
    Božanić DK; Djoković V; Dimitrijević-Branković S; Krsmanović R; McPherson M; Nair PS; Georges MK; Radhakrishnan T
    J Biomater Sci Polym Ed; 2011; 22(17):2343-55. PubMed ID: 21092423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes.
    Fanta GF; Kenar JA; Felker FC; Byars JA
    Carbohydr Polym; 2013 Jan; 92(1):260-8. PubMed ID: 23218293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterials Based on Fe
    Ribeiro VGP; Mota JPF; Júnior AEC; Lima NMA; Fechine PBA; Denardin JC; Carbone L; Bloise E; Mele G; Mazzetto SE
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31505873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa.
    Kumar CG; Mamidyala SK
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):462-6. PubMed ID: 21353501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method.
    Reicha FM; Sarhan A; Abdel-Hamid MI; El-Sherbiny IM
    Carbohydr Polym; 2012 Jun; 89(1):236-44. PubMed ID: 24750629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal properties of tannin extracted from Anacardium occidentale L. using TGA and FT-IR spectroscopy.
    Viswanath V; Leo VV; Prabha SS; Prabhakumari C; Potty VP; Jisha MS
    Nat Prod Res; 2016; 30(2):223-7. PubMed ID: 26119693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of silver nanoparticles by Phoma glomerata.
    Gade A; Gaikwad S; Duran N; Rai M
    Micron; 2014 Apr; 59():52-9. PubMed ID: 24530365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, optical properties, stability, and encapsulation of Cu-nanoparticles.
    Bashir O; Hussain S; AL-Thabaiti SA; Khan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():265-73. PubMed ID: 25615680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent.
    Morones JR; Frey W
    Langmuir; 2007 Jul; 23(15):8180-6. PubMed ID: 17590029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.
    Sadeghi B; Rostami A; Momeni SS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates.
    Lukman AI; Gong B; Marjo CE; Roessner U; Harris AT
    J Colloid Interface Sci; 2011 Jan; 353(2):433-44. PubMed ID: 20974473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.