BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 26344363)

  • 1. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.
    Grasman JM; Do DM; Page RL; Pins GD
    Biomaterials; 2015 Dec; 72():49-60. PubMed ID: 26344363
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Grasman JM; Page RL; Pins GD
    Tissue Eng Part A; 2017 Aug; 23(15-16):773-783. PubMed ID: 28351217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.
    Aurora A; Roe JL; Corona BT; Walters TJ
    Biomaterials; 2015 Oct; 67():393-407. PubMed ID: 26256250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslinking strategies facilitate tunable structural properties of fibrin microthreads.
    Grasman JM; Page RL; Dominko T; Pins GD
    Acta Biomater; 2012 Nov; 8(11):4020-30. PubMed ID: 22824528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing Porous Fibrin Scaffolds with Tunable Anisotropic Features to Direct Myoblast Orientation.
    Samolyk BL; Pace ZY; Li J; Billiar KL; Coburn JM; Whittington CF; Pins GD
    Tissue Eng Part C Methods; 2024 May; 30(5):217-228. PubMed ID: 38562112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
    Grasman JM; Zayas MJ; Page RL; Pins GD
    Acta Biomater; 2015 Oct; 25():2-15. PubMed ID: 26219862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
    Cornwell KG; Pins GD
    J Biomed Mater Res A; 2007 Jul; 82(1):104-12. PubMed ID: 17269139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads.
    Page RL; Malcuit C; Vilner L; Vojtic I; Shaw S; Hedblom E; Hu J; Pins GD; Rolle MW; Dominko T
    Tissue Eng Part A; 2011 Nov; 17(21-22):2629-40. PubMed ID: 21699414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury.
    Garg K; Corona BT; Walters TJ
    J Appl Physiol (1985); 2014 Nov; 117(10):1120-31. PubMed ID: 25257876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies.
    Passipieri JA; Christ GJ
    Cells Tissues Organs; 2016; 202(3-4):202-213. PubMed ID: 27825153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminin-111-Enriched Fibrin Hydrogels Enhance Functional Muscle Regeneration Following Trauma.
    Ziemkiewicz N; Hilliard GM; Dunn AJ; Madsen J; Haas G; Au J; Genovese PC; Chauvin HM; West C; Paoli A; Garg K
    Tissue Eng Part A; 2022 Apr; 28(7-8):297-311. PubMed ID: 34409846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiology of Volumetric Muscle Loss Injury.
    Corona BT; Wenke JC; Ward CL
    Cells Tissues Organs; 2016; 202(3-4):180-188. PubMed ID: 27825160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury.
    Corona BT; Machingal MA; Criswell T; Vadhavkar M; Dannahower AC; Bergman C; Zhao W; Christ GJ
    Tissue Eng Part A; 2012 Jun; 18(11-12):1213-28. PubMed ID: 22439962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment.
    Carnes ME; Pins GD
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2308-2319. PubMed ID: 31967415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Porcine Urinary Bladder Matrix Does Not Recapitulate the Spatiotemporal Macrophage Response of Muscle Regeneration after Volumetric Muscle Loss Injury.
    Aurora A; Corona BT; Walters TJ
    Cells Tissues Organs; 2016; 202(3-4):189-201. PubMed ID: 27825152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factor supplemented matrigel improves ectopic skeletal muscle formation--a cell therapy approach.
    Barbero A; Benelli R; Minghelli S; Tosetti F; Dorcaratto A; Ponzetto C; Wernig A; Cullen MJ; Albini A; Noonan DM
    J Cell Physiol; 2001 Feb; 186(2):183-92. PubMed ID: 11169455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury.
    Westman AM; Peirce SM; Christ GJ; Blemker SS
    PLoS Comput Biol; 2021 May; 17(5):e1008937. PubMed ID: 33970905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle.
    Miller KJ; Thaloor D; Matteson S; Pavlath GK
    Am J Physiol Cell Physiol; 2000 Jan; 278(1):C174-81. PubMed ID: 10644525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graft alignment impacts the regenerative response of skeletal muscle after volumetric muscle loss in a rat model.
    Kim J; Kasukonis B; Roberts K; Dunlap G; Brown L; Washington T; Wolchok J
    Acta Biomater; 2020 Mar; 105():191-202. PubMed ID: 31978621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.