BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26344424)

  • 1. Salicin derivatives from Salix glandulosa and their biological activities.
    Kim CS; Subedi L; Park KJ; Kim SY; Choi SU; Kim KH; Lee KR
    Fitoterapia; 2015 Oct; 106():147-52. PubMed ID: 26344424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenolic Glycosides from the Twigs of Salix glandulosa.
    Kim CS; Kwon OW; Kim SY; Choi SU; Kim JY; Han JY; Choi SI; Choi JG; Kim KH; Lee KR
    J Nat Prod; 2014 Aug; 77(8):1955-61. PubMed ID: 25098650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salicin-7-sulfate: A new salicinoid from willow and implications for herbal medicine.
    Noleto-Dias C; Ward JL; Bellisai A; Lomax C; Beale MH
    Fitoterapia; 2018 Jun; 127():166-172. PubMed ID: 29447984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective compounds from Salix pseudo-lasiogyne twigs and their anti-amnesic effects on scopolamine-induced memory deficit in mice.
    Yang H; Lee SH; Sung SH; Kim J; Kim YC
    Planta Med; 2013 Jan; 79(1):78-82. PubMed ID: 23154841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotective Fatty Acids from the Stem Bark of Sorbus commixta.
    Kim CS; Suh WS; Subedi L; Kim SY; Choi SU; Lee KR
    Lipids; 2016 Aug; 51(8):989-95. PubMed ID: 27386872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia.
    Lee SY; Moon E; Kim SY; Lee KR
    Bioorg Med Chem Lett; 2013 Apr; 23(7):2140-4. PubMed ID: 23462643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolic derivatives from the rhizomes of Dioscorea nipponica and their anti-neuroinflammatory and neuroprotective activities.
    Woo KW; Kwon OW; Kim SY; Choi SZ; Son MW; Kim KH; Lee KR
    J Ethnopharmacol; 2014 Sep; 155(2):1164-70. PubMed ID: 24973689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New salicin derivatives from the leaves of Populus euphratica.
    Wei W; Rena K; Yang XW
    J Asian Nat Prod Res; 2015 May; 17(5):491-6. PubMed ID: 25903097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignan Glycosides from the Twigs of Chaenomeles sinensis and Their Biological Activities.
    Kim CS; Subedi L; Kim SY; Choi SU; Kim KH; Lee KR
    J Nat Prod; 2015 May; 78(5):1174-8. PubMed ID: 25894905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiohydantoin and Hydantoin Derivatives from the Roots of
    Lee TH; Khan Z; Kim SY; Lee KR
    J Nat Prod; 2019 Nov; 82(11):3020-3024. PubMed ID: 31625742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenolic glucosides from Hasseltia floribunda.
    Dagvadorj E; Shaker KH; Windsor D; Schneider B; Boland W
    Phytochemistry; 2010 Nov; 71(16):1900-7. PubMed ID: 20822782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diterpenes from the Trunk of Abies holophylla and Their Potential Neuroprotective and Anti-inflammatory Activities.
    Kim CS; Subedi L; Kim SY; Choi SU; Kim KH; Lee KR
    J Nat Prod; 2016 Feb; 79(2):387-94. PubMed ID: 26812172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of commercial willow bark extracts by new technology platform: combined use of metabolomics, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay.
    Agnolet S; Wiese S; Verpoorte R; Staerk D
    J Chromatogr A; 2012 Nov; 1262():130-7. PubMed ID: 23021634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acutifoliside, a novel benzoic acid glycoside from Salix acutifolia.
    Wu Y; Dobermann D; Beale MH; Ward JL
    Nat Prod Res; 2016 Aug; 30(15):1731-9. PubMed ID: 26820172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iridoid Glycosides from the Twigs of Sambucus williamsii var. coreana and Their Biological Activities.
    Suh WS; Kim CS; Subedi L; Kim SY; Choi SU; Lee KR
    J Nat Prod; 2017 Sep; 80(9):2502-2508. PubMed ID: 28841320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secoiridoid Glycosides from the Twigs of Ligustrum obtusifolium Possess Anti-inflammatory and Neuroprotective Effects.
    Suh WS; Kwon OK; Lee TH; Subedi L; Kim SY; Lee KR
    Chem Pharm Bull (Tokyo); 2018; 66(1):78-83. PubMed ID: 29311515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antineurodegenerative Labdane Diterpenoid Glycosides from the Twigs of
    Park KJ; Khan Z; Subedi L; Kim SY; Lee KR
    J Nat Prod; 2020 Jun; 83(6):1794-1803. PubMed ID: 32520551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constituents of Limonia acidissima inhibit LPS-induced nitric oxide production in BV-2 microglia.
    Kim KH; Ha SK; Kim SY; Youn HJ; Lee KR
    J Enzyme Inhib Med Chem; 2010 Dec; 25(6):887-92. PubMed ID: 20578973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenylethanoid glycosides with anti-inflammatory activities from the stems of Cistanche deserticola cultured in Tarim desert.
    Nan ZD; Zeng KW; Shi SP; Zhao MB; Jiang Y; Tu PF
    Fitoterapia; 2013 Sep; 89():167-74. PubMed ID: 23685247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-Methylthio-butanyl derivatives from the seeds of Raphanus sativus and their biological evaluation on anti-inflammatory and antitumor activities.
    Kim KH; Moon E; Kim SY; Choi SU; Lee JH; Lee KR
    J Ethnopharmacol; 2014; 151(1):503-8. PubMed ID: 24231071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.