These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26344543)

  • 1. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
    Jiang L; Yin T; Dong Z; Liao M; Tan SJ; Goh XM; Allioux D; Hu H; Li X; Yang JK; Shen Z
    ACS Nano; 2015 Oct; 9(10):10039-46. PubMed ID: 26344543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral dark-field microscopy of gold nanodisks.
    Grasseschi D; Lima FS; Nakamura M; Toma HE
    Micron; 2015 Feb; 69():15-20. PubMed ID: 25437851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells.
    Gu Z; Jing C; Ying YL; He P; Long YT
    Theranostics; 2015; 5(2):188-95. PubMed ID: 25553107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-field asymmetries in plasmonic resonators.
    Aksyuk V; Lahiri B; Holland G; Centrone A
    Nanoscale; 2015 Feb; 7(8):3634-44. PubMed ID: 25636125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures.
    Shen J; Xu L; Wang C; Pei H; Tai R; Song S; Huang Q; Fan C; Chen G
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8338-42. PubMed ID: 24954711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments.
    Shao L; Susha AS; Cheung LS; Sau TK; Rogach AL; Wang J
    Langmuir; 2012 Jun; 28(24):8979-84. PubMed ID: 22353020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures.
    Abid I; Bohloul A; Najmaei S; Avendano C; Liu HL; Péchou R; Mlayah A; Lou J
    Nanoscale; 2016 Apr; 8(15):8151-9. PubMed ID: 27029770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing.
    Dahlin AB; Chen S; Jonsson MP; Gunnarsson L; Käll M; Höök F
    Anal Chem; 2009 Aug; 81(16):6572-80. PubMed ID: 19621881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Opt Express; 2009 Dec; 17(26):23765-71. PubMed ID: 20052087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy.
    Fan JA; Bao K; Lassiter JB; Bao J; Halas NJ; Nordlander P; Capasso F
    Nano Lett; 2012 Jun; 12(6):2817-21. PubMed ID: 22524322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures.
    Knight MW; Fan J; Capasso F; Halas NJ
    Opt Express; 2010 Feb; 18(3):2579-87. PubMed ID: 20174087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct excitation of dark plasmonic resonances under visible light at normal incidence.
    Gu Y; Qin F; Yang JK; Yeo SP; Qiu CW
    Nanoscale; 2014 Feb; 6(4):2106-11. PubMed ID: 24435813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition.
    Hwang WS; Truong PL; Sim SJ
    Anal Biochem; 2012 Feb; 421(1):213-8. PubMed ID: 22146558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic percolation: plasmon-manifested dielectric-to-metal transition.
    Chen H; Wang F; Li K; Woo KC; Wang J; Li Q; Sun LD; Zhang X; Lin HQ; Yan CH
    ACS Nano; 2012 Aug; 6(8):7162-71. PubMed ID: 22757659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the rotation angle on surface plasmon coupling of nanoprisms.
    Chien MH; Nien LW; Chao BK; Li JH; Hsueh CH
    Nanoscale; 2016 Feb; 8(6):3660-70. PubMed ID: 26809737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.