These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 26344767)
1. miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. Tsujimura K; Irie K; Nakashima H; Egashira Y; Fukao Y; Fujiwara M; Itoh M; Uesaka M; Imamura T; Nakahata Y; Yamashita Y; Abe T; Takamori S; Nakashima K Cell Rep; 2015 Sep; 12(11):1887-901. PubMed ID: 26344767 [TBL] [Abstract][Full Text] [Related]
2. [Novel function of MeCP2 in the pathophysiology of Rett syndrome: Regulation of mTOR signaling mediated by MeCP2-dependent microRNA processing]. Tsujimura K; Nakashima K Seikagaku; 2017 Feb; 89(1):51-61. PubMed ID: 29624958 [No Abstract] [Full Text] [Related]
3. MeCP2 controls neural stem cell fate specification through miR-199a-mediated inhibition of BMP-Smad signaling. Nakashima H; Tsujimura K; Irie K; Imamura T; Trujillo CA; Ishizu M; Uesaka M; Pan M; Noguchi H; Okada K; Aoyagi K; Andoh-Noda T; Okano H; Muotri AR; Nakashima K Cell Rep; 2021 May; 35(7):109124. PubMed ID: 34010654 [TBL] [Abstract][Full Text] [Related]
4. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Ricciardi S; Boggio EM; Grosso S; Lonetti G; Forlani G; Stefanelli G; Calcagno E; Morello N; Landsberger N; Biffo S; Pizzorusso T; Giustetto M; Broccoli V Hum Mol Genet; 2011 Mar; 20(6):1182-96. PubMed ID: 21212100 [TBL] [Abstract][Full Text] [Related]
5. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mellios N; Feldman DA; Sheridan SD; Ip JPK; Kwok S; Amoah SK; Rosen B; Rodriguez BA; Crawford B; Swaminathan R; Chou S; Li Y; Ziats M; Ernst C; Jaenisch R; Haggarty SJ; Sur M Mol Psychiatry; 2018 Apr; 23(4):1051-1065. PubMed ID: 28439102 [TBL] [Abstract][Full Text] [Related]
6. Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene. Pitcher MR; Herrera JA; Buffington SA; Kochukov MY; Merritt JK; Fisher AR; Schanen NC; Costa-Mattioli M; Neul JL Hum Mol Genet; 2015 May; 24(9):2662-72. PubMed ID: 25634563 [TBL] [Abstract][Full Text] [Related]
7. Regulation mechanism and research progress of MeCP2 in Rett syndrome. Yang W; Pan H Yi Chuan; 2014 Jul; 36(7):625-30. PubMed ID: 25076025 [TBL] [Abstract][Full Text] [Related]
8. MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution. Kaufmann WE; Johnston MV; Blue ME Brain Dev; 2005 Nov; 27 Suppl 1():S77-S87. PubMed ID: 16182491 [TBL] [Abstract][Full Text] [Related]
9. Separate respiratory phenotypes in methyl-CpG-binding protein 2 (Mecp2) deficient mice. Bissonnette JM; Knopp SJ Pediatr Res; 2006 Apr; 59(4 Pt 1):513-8. PubMed ID: 16549521 [TBL] [Abstract][Full Text] [Related]
10. MeCP2+/- mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder. Liao W; Gandal MJ; Ehrlichman RS; Siegel SJ; Carlson GC Neurobiol Dis; 2012 Apr; 46(1):88-92. PubMed ID: 22249109 [TBL] [Abstract][Full Text] [Related]
11. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Cheng TL; Wang Z; Liao Q; Zhu Y; Zhou WH; Xu W; Qiu Z Dev Cell; 2014 Mar; 28(5):547-60. PubMed ID: 24636259 [TBL] [Abstract][Full Text] [Related]
12. Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice. Lang M; Wither RG; Brotchie JM; Wu C; Zhang L; Eubanks JH Hum Mol Genet; 2013 Jan; 22(2):358-71. PubMed ID: 23077217 [TBL] [Abstract][Full Text] [Related]
13. Selective preservation of cholinergic MeCP2 rescues specific Rett-syndrome-like phenotypes in MeCP2 Zhou H; Wu W; Zhang Y; He H; Yuan Z; Zhu Z; Zhao Z Behav Brain Res; 2017 Mar; 322(Pt A):51-59. PubMed ID: 28093257 [TBL] [Abstract][Full Text] [Related]
14. Altered somatosensory barrel cortex refinement in the developing brain of Mecp2-null mice. Moroto M; Nishimura A; Morimoto M; Isoda K; Morita T; Yoshida M; Morioka S; Tozawa T; Hasegawa T; Chiyonobu T; Yoshimoto K; Hosoi H Brain Res; 2013 Nov; 1537():319-26. PubMed ID: 24060648 [TBL] [Abstract][Full Text] [Related]
15. Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Alvarez-Saavedra M; Sáez MA; Kang D; Zoghbi HY; Young JI Hum Mol Genet; 2007 Oct; 16(19):2315-25. PubMed ID: 17635839 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Wu H; Tao J; Chen PJ; Shahab A; Ge W; Hart RP; Ruan X; Ruan Y; Sun YE Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18161-6. PubMed ID: 20921386 [TBL] [Abstract][Full Text] [Related]
17. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Urdinguio RG; Fernandez AF; Lopez-Nieva P; Rossi S; Huertas D; Kulis M; Liu CG; Croce CM; Calin GA; Esteller M Epigenetics; 2010 Oct; 5(7):656-63. PubMed ID: 20716963 [TBL] [Abstract][Full Text] [Related]
18. FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Deng V; Matagne V; Banine F; Frerking M; Ohliger P; Budden S; Pevsner J; Dissen GA; Sherman LS; Ojeda SR Hum Mol Genet; 2007 Mar; 16(6):640-50. PubMed ID: 17309881 [TBL] [Abstract][Full Text] [Related]
19. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice. Kishi N; MacDonald JL; Ye J; Molyneaux BJ; Azim E; Macklis JD Nat Commun; 2016 Jan; 7():10520. PubMed ID: 26821816 [TBL] [Abstract][Full Text] [Related]
20. Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. Itoh M; Ide S; Takashima S; Kudo S; Nomura Y; Segawa M; Kubota T; Mori H; Tanaka S; Horie H; Tanabe Y; Goto Y J Neuropathol Exp Neurol; 2007 Feb; 66(2):117-23. PubMed ID: 17278996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]