These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26345090)
21. Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations. Taherian F; Marcon V; Bonaccurso E; van der Vegt NFA J Colloid Interface Sci; 2016 Oct; 479():189-198. PubMed ID: 27388133 [TBL] [Abstract][Full Text] [Related]
22. A generalized scaling theory for spontaneous spreading of Newtonian fluids on solid substrates. Azimi Yancheshme A; Palmese GR; Alvarez NJ J Colloid Interface Sci; 2023 Apr; 636():677-688. PubMed ID: 36680958 [TBL] [Abstract][Full Text] [Related]
23. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability. Taylor MT; Qian T Phys Rev E; 2016 Mar; 93(3):033105. PubMed ID: 27078445 [TBL] [Abstract][Full Text] [Related]
24. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature. Mohammadi M; Tembely M; Dolatabadi A Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630 [TBL] [Abstract][Full Text] [Related]
26. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface. Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569 [TBL] [Abstract][Full Text] [Related]
27. Modeling the early stages of reactive wetting. Wheeler D; Warren JA; Boettinger WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051601. PubMed ID: 21230482 [TBL] [Abstract][Full Text] [Related]
28. A mathematical model and mesh-free numerical method for contact-line motion in lubrication theory. Pang KE; Ó Náraigh L Environ Fluid Mech (Dordr); 2022; 22(2-3):301-336. PubMed ID: 35664689 [TBL] [Abstract][Full Text] [Related]
29. Normal and oblique droplet impingement dynamics on moving dry walls. Raman KA Phys Rev E; 2019 May; 99(5-1):053108. PubMed ID: 31212429 [TBL] [Abstract][Full Text] [Related]
30. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems. Léonforte F; Servantie J; Pastorino C; Müller M J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476 [TBL] [Abstract][Full Text] [Related]
31. Stability analysis of a thermocapillary spreading film with slip-model. Tiwari N Eur Phys J E Soft Matter; 2014 Nov; 37(11):120. PubMed ID: 25428784 [TBL] [Abstract][Full Text] [Related]
32. A thin-film model for droplet spreading on soft solid substrates. Charitatos V; Kumar S Soft Matter; 2020 Sep; 16(35):8284-8298. PubMed ID: 32804176 [TBL] [Abstract][Full Text] [Related]
34. Numerical Simulation and Experimental Validation of Liquid Metal Droplet Formation in a Co-Flowing Capillary Microfluidic Device. Hu Q; Jiang T; Jiang H Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32033467 [TBL] [Abstract][Full Text] [Related]
35. Spontaneous Spreading of a Droplet: The Role of Solid Continuity and Advancing Contact Angle. Jiang Y; Sun Y; Drelich JW; Choi CH Langmuir; 2018 May; 34(17):4945-4951. PubMed ID: 29629765 [TBL] [Abstract][Full Text] [Related]
36. An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices. Schertzer MJ; Gubarenko SI; Ben-Mrad R; Sullivan PE Langmuir; 2010 Dec; 26(24):19230-8. PubMed ID: 21080633 [TBL] [Abstract][Full Text] [Related]
37. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Liu H; Ju Y; Wang N; Xi G; Zhang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585 [TBL] [Abstract][Full Text] [Related]
38. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio. Liang H; Liu H; Chai Z; Shi B Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728 [TBL] [Abstract][Full Text] [Related]
39. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows. Qian T; Wu C; Lei SL; Wang XP; Sheng P J Phys Condens Matter; 2009 Nov; 21(46):464119. PubMed ID: 21715883 [TBL] [Abstract][Full Text] [Related]
40. Multiscale Simulation Method for Quantitative Prediction of Surface Wettability at the Atomistic Level. Gim S; Lim HK; Kim H J Phys Chem Lett; 2018 Apr; 9(7):1750-1758. PubMed ID: 29558139 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]