BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26345507)

  • 1. Comparative analysis of eukaryotic cell-free expression systems.
    Hartsough EM; Shah P; Larsen AC; Chaput JC
    Biotechniques; 2015 Sep; 59(3):149-51. PubMed ID: 26345507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A technique to increase protein yield in a rabbit reticulocyte lysate translation system.
    Anastasina M; Terenin I; Butcher SJ; Kainov DE
    Biotechniques; 2014 Jan; 56(1):36-9. PubMed ID: 24447137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective non-viral leader for cap-independent translation in a eukaryotic cell-free system.
    Shaloiko LA; Granovsky IE; Ivashina TV; Ksenzenko VN; Shirokov VA; Spirin AS
    Biotechnol Bioeng; 2004 Dec; 88(6):730-9. PubMed ID: 15532099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential resistance to proteinase K digestion of the yeast prion-like (Ure2p) protein synthesized in vitro in wheat germ extract and rabbit reticulocyte lysate cell-free translation systems.
    Komar AA; Lesnik T; Cullin C; Guillemet E; Ehrlich R; Reiss C
    FEBS Lett; 1997 Sep; 415(1):6-10. PubMed ID: 9326358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tobacco BY-2 cell-free lysate: an alternative and highly-productive plant-based in vitro translation system.
    Buntru M; Vogel S; Spiegel H; Schillberg S
    BMC Biotechnol; 2014 May; 14():37. PubMed ID: 24886601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in genome-wide protein expression using the wheat germ cell-free system.
    Endo Y; Sawasaki T
    Methods Mol Biol; 2005; 310():145-67. PubMed ID: 16350953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the folding and import of the precursor to mitochondrial aspartate aminotransferase on the nature of the cell-free translation system.
    Lain B; Iriarte A; Martinez-Carrion M
    J Biol Chem; 1994 Jun; 269(22):15588-96. PubMed ID: 8195205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ribonuclease H activities present in two cell-free protein synthesizing systems, the wheat germ extract and the rabbit reticulocyte lysate.
    Cazenave C; Frank P; Büsen W
    Biochimie; 1993; 75(1-2):113-22. PubMed ID: 8389210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro production of an active neurotrophic factor, neuregulin-1: qualitative comparison of different cell-free translation systems.
    Wang R; Iwakura Y; Araki K; Sotoyama H; Takei N; Nawa H
    Neurosci Lett; 2011 Jun; 497(2):90-3. PubMed ID: 21536100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient mammalian cell-free translation system supplemented with translation factors.
    Mikami S; Masutani M; Sonenberg N; Yokoyama S; Imataka H
    Protein Expr Purif; 2006 Apr; 46(2):348-57. PubMed ID: 16289705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation.
    Michel YM; Borman AM; Paulous S; Kean KM
    Mol Cell Biol; 2001 Jul; 21(13):4097-109. PubMed ID: 11390639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cell-free protein synthesis system from wheat germ.
    Takai K; Endo Y
    Methods Mol Biol; 2010; 607():23-30. PubMed ID: 20204845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular chaperoning function of Ric-8 is to fold nascent heterotrimeric G protein α subunits.
    Chan P; Thomas CJ; Sprang SR; Tall GG
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3794-9. PubMed ID: 23431197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems.
    Panthu B; Ohlmann T; Perrier J; Schlattner U; Jalinot P; Elena-Herrmann B; Rautureau GJP
    ACS Synth Biol; 2018 Jan; 7(1):218-226. PubMed ID: 28915016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free protein synthesis systems with extracts from cultured human cells.
    Mikami S; Kobayashi T; Imataka H
    Methods Mol Biol; 2010; 607():43-52. PubMed ID: 20204847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free protein synthesis systems: increasing their performance and applications.
    Nakano H; Kawarasaki Y; Yamane T
    Adv Biochem Eng Biotechnol; 2004; 90():135-49. PubMed ID: 15453188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance benchmarking of four cell-free protein expression systems.
    Gagoski D; Polinkovsky ME; Mureev S; Kunert A; Johnston W; Gambin Y; Alexandrov K
    Biotechnol Bioeng; 2016 Feb; 113(2):292-300. PubMed ID: 26301602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation of the start codon to enhance Cripavirus internal ribosome entry site-mediated translation in a wheat germ extract.
    Ogawa A; Takamatsu M
    Bioorg Med Chem Lett; 2019 Nov; 29(22):126729. PubMed ID: 31607608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-free protein synthesis as a promising expression system for recombinant proteins.
    Ge X; Xu J
    Methods Mol Biol; 2012; 824():565-78. PubMed ID: 22160920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.