These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26345617)

  • 1. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine.
    Qin J; Zhou YJ; Krivoruchko A; Huang M; Liu L; Khoomrung S; Siewers V; Jiang B; Nielsen J
    Nat Commun; 2015 Sep; 6():8224. PubMed ID: 26345617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular Pathway Rewiring of Yeast for Amino Acid Production.
    Liu Q; Yu T; Campbell K; Nielsen J; Chen Y
    Methods Enzymol; 2018; 608():417-439. PubMed ID: 30173772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewiring yeast metabolism to synthesize products beyond ethanol.
    Gambacorta FV; Dietrich JJ; Yan Q; Pfleger BF
    Curr Opin Chem Biol; 2020 Dec; 59():182-192. PubMed ID: 33032255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Engineering of
    Xiao F; Lian J; Tu S; Xie L; Li J; Zhang F; Linhardt RJ; Huang H; Zhong W
    ACS Synth Biol; 2022 Feb; 11(2):800-811. PubMed ID: 35107250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of isoprene synthesis to enable production of curcurbitadienol synthesis in Saccharomyces cerevisiae.
    Qiao J; Luo Z; Cui S; Zhao H; Tang Q; Mo C; Ma X; Ding Z
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):147-157. PubMed ID: 30535727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.
    Otero JM; Cimini D; Patil KR; Poulsen SG; Olsson L; Nielsen J
    PLoS One; 2013; 8(1):e54144. PubMed ID: 23349810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 12. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals.
    Liu Q; Yu T; Li X; Chen Y; Campbell K; Nielsen J; Chen Y
    Nat Commun; 2019 Oct; 10(1):4976. PubMed ID: 31672987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.
    Zhou YJ; Buijs NA; Zhu Z; Qin J; Siewers V; Nielsen J
    Nat Commun; 2016 May; 7():11709. PubMed ID: 27222209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization.
    Faria C; Borges N; Rocha I; Santos H
    Microb Cell Fact; 2018 Nov; 17(1):178. PubMed ID: 30445960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.
    Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H
    Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae.
    Liu T; Sun L; Zhang C; Liu Y; Li J; Du G; Lv X; Liu L
    Bioresour Technol; 2023 Jul; 379():129023. PubMed ID: 37028528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals.
    Hu Y; Zhu Z; Nielsen J; Siewers V
    Open Biol; 2019 May; 9(5):190049. PubMed ID: 31088249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.