These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26345619)

  • 1. Identification of residues important for substrate uptake in a glucose transporter from the filamentous fungus Trichoderma reesei.
    Zhang W; Cao Y; Gong J; Bao X; Chen G; Liu W
    Sci Rep; 2015 Sep; 5():13829. PubMed ID: 26345619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing glucose uptake through the yeast hexose transporter 1 (Hxt1).
    Roy A; Dement AD; Cho KH; Kim JH
    PLoS One; 2015; 10(3):e0121985. PubMed ID: 25816250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Characterization of an Efficient d-Xylose Transporter in
    Jiang Y; Shen Y; Gu L; Wang Z; Su N; Niu K; Guo W; Hou S; Bao X; Tian C; Fang X
    J Agric Food Chem; 2020 Mar; 68(9):2702-2710. PubMed ID: 32054270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular binding and uptake of fluorescent glucose analogs 2-NBDG and 6-NBDG occurs independent of membrane glucose transporters.
    Hamilton KE; Bouwer MF; Louters LL; Looyenga BD
    Biochimie; 2021 Nov; 190():1-11. PubMed ID: 34224807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1.
    Kasahara T; Maeda M; Boles E; Kasahara M
    Biochim Biophys Acta; 2009 May; 1788(5):1051-5. PubMed ID: 19366592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of fluorescent D- and L-glucose analogues, 2-NBDG and 2-NBDLG, into human osteosarcoma U2OS cells in a phloretin-inhibitable manner.
    Ogawa T; Sasaki A; Ono K; Ohshika S; Ishibashi Y; Yamada K
    Hum Cell; 2021 Mar; 34(2):634-643. PubMed ID: 33454890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence method for measurement of glucose transport in kidney cells.
    Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM
    Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis.
    Zhang W; Kou Y; Xu J; Cao Y; Zhao G; Shao J; Wang H; Wang Z; Bao X; Chen G; Liu W
    J Biol Chem; 2013 Nov; 288(46):32861-72. PubMed ID: 24085297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose.
    Farwick A; Bruder S; Schadeweg V; Oreb M; Boles E
    Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5159-64. PubMed ID: 24706835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
    Sun L; Zeng X; Yan C; Sun X; Gong X; Rao Y; Yan N
    Nature; 2012 Oct; 490(7420):361-6. PubMed ID: 23075985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen- and glucose-dependent expression of Trhxt1, a putative glucose transporter gene of Trichoderma reesei.
    Ramos AS; Chambergo FS; Bonaccorsi ED; Ferreira AJ; Cella N; Gombert AK; Tonso A; El-Dorry H
    Biochemistry; 2006 Jul; 45(26):8184-92. PubMed ID: 16800643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asp
    Seica AFS; Iancu CV; Pfeilschifter B; Madej MG; Choe JY; Hellwig P
    J Biol Chem; 2020 Nov; 295(45):15253-15261. PubMed ID: 32859752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose uptake in Trichoderma harzianum: role of gtt1.
    Delgado-Jarana J; Moreno-Mateos MA; BenĂ­tez T
    Eukaryot Cell; 2003 Aug; 2(4):708-17. PubMed ID: 12912890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification by comprehensive chimeric analysis of a key residue responsible for high affinity glucose transport by yeast HXT2.
    Kasahara T; Maeda M; Ishiguro M; Kasahara M
    J Biol Chem; 2007 May; 282(18):13146-50. PubMed ID: 17369259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter.
    Naula CM; Logan FJ; Wong PE; Barrett MP; Burchmore RJ
    J Biol Chem; 2010 Sep; 285(39):29721-8. PubMed ID: 20601430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases.
    Saloheimo A; Rauta J; Stasyk OV; Sibirny AA; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):1041-52. PubMed ID: 17180689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae.
    Nijland JG; Shin HY; de Waal PP; Klaassen P; Driessen AJM
    J Appl Microbiol; 2018 Feb; 124(2):503-510. PubMed ID: 29240974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular characterization of glucose uptake in coronary endothelial cells.
    Gaudreault N; Scriven DR; Laher I; Moore ED
    Microvasc Res; 2008 Jan; 75(1):73-82. PubMed ID: 17531273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A real-time method of imaging glucose uptake in single, living mammalian cells.
    Yamada K; Saito M; Matsuoka H; Inagaki N
    Nat Protoc; 2007; 2(3):753-62. PubMed ID: 17406637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells.
    O'Neil RG; Wu L; Mullani N
    Mol Imaging Biol; 2005; 7(6):388-92. PubMed ID: 16284704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.