BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26345876)

  • 1. Analysis of alterations to the transcriptome of Loquat (Eriobotrya japonica Lindl.) under low temperature stress via de novo sequencing.
    Gong RG; Lai J; Yang W; Liao MA; Wang ZH; Liang GL
    Genet Mol Res; 2015 Aug; 14(3):9423-36. PubMed ID: 26345876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets.
    Xu HX; Li XY; Chen JW
    J Plant Res; 2017 Sep; 130(5):893-907. PubMed ID: 28447204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating proteomic and transcriptomic analyses of loquat (Eriobotrya japonica Lindl.) in response to cold stress.
    Lou X; Wang H; Ni X; Gao Z; Iqbal S
    Gene; 2018 Nov; 677():57-65. PubMed ID: 30017739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic Analysis Reveals Potential Gene Regulatory Networks Under Cold Stress of Loquat (
    Zhang J; An H; Zhang X; Xu F; Zhou B
    Front Plant Sci; 2022; 13():944269. PubMed ID: 35937353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule real-time sequencing of the full-length transcriptome of loquat under low-temperature stress.
    Pan C; Wang Y; Tao L; Zhang H; Deng Q; Yang Z; Chi Z; Yang Y
    PLoS One; 2020; 15(9):e0238942. PubMed ID: 32915882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit.
    Pareek S; Benkeblia N; Janick J; Cao S; Yahia EM
    J Sci Food Agric; 2014 Jun; 94(8):1495-1504. PubMed ID: 24395491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa.
    Pang T; Ye CY; Xia X; Yin W
    BMC Genomics; 2013 Jul; 14():488. PubMed ID: 23865740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome.
    Jiang S; An H; Xu F; Zhang X
    Gigascience; 2020 Mar; 9(3):. PubMed ID: 32141509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Transcriptome Profiles of 'Meyer' Zoysiagrass in Response to Cold Stress.
    Wei S; Du Z; Gao F; Ke X; Li J; Liu J; Zhou Y
    PLoS One; 2015; 10(6):e0131153. PubMed ID: 26115186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic Analysis of Paeonia delavayi Wild Population Flowers to Identify Differentially Expressed Genes Involved in Purple-Red and Yellow Petal Pigmentation.
    Shi Q; Zhou L; Wang Y; Li K; Zheng B; Miao K
    PLoS One; 2015; 10(8):e0135038. PubMed ID: 26267644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cis-regulated additively expressed genes play a fundamental role in the formation of triploid loquat (Eriobotrya japonica (Thunb.) Lindl.) Heterosis.
    Liu C; Wu D; Wang L; Dang J; He Q; Guo Q; Liang G
    Mol Genet Genomics; 2018 Aug; 293(4):967-981. PubMed ID: 29611056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analysis of flower bud transition and functional characterization of EjAGL17 involved in regulating floral initiation in loquat.
    Xia Y; Xue B; Shi M; Zhan F; Wu D; Jing D; Wang S; Guo Q; Liang G; He Q
    PLoS One; 2020; 15(10):e0239382. PubMed ID: 33031442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of
    Jiang Y; Peng J; Wang M; Su W; Gan X; Jing Y; Yang X; Lin S; Gao Y
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome sequencing of a thalloid bryophyte; Dumortiera hirsuta (Sw) Nees: assembly, annotation, and marker discovery.
    Singh H; Rai KM; Upadhyay SK; Pant P; Verma PC; Singh AP; Singh PK
    Sci Rep; 2015 Oct; 5():15350. PubMed ID: 26481431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat.
    Jing D; Chen W; Hu R; Zhang Y; Xia Y; Wang S; He Q; Guo Q; Liang G
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene biosynthesis and perception during ripening of loquat fruit (Eriobotrya japonica Lindl.).
    Alos E; Martinez-Fuentes A; Reig C; Mesejo C; Rodrigo MJ; Agustí M; Zacarías L
    J Plant Physiol; 2017 Mar; 210():64-71. PubMed ID: 28088087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warm temperature during floral bud transition turns off EjTFL1 gene expression and promotes flowering in Loquat (Eriobotrya japonica Lindl.).
    Reig C; García-Lorca A; Martínez-Fuentes A; Mesejo C; Agustí M
    Plant Sci; 2023 Oct; 335():111810. PubMed ID: 37500016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Activities of Extracts from Loquat (Eriobotrya japonica Lindl.): A Review.
    Liu Y; Zhang W; Xu C; Li X
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27929430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EjFAD8 Enhances the Low-Temperature Tolerance of Loquat by Desaturation of Sulfoquinovosyl Diacylglycerol (SQDG).
    Xu X; Yang H; Suo X; Liu M; Jing D; Zhang Y; Dang J; Wu D; He Q; Xia Y; Wang S; Liang G; Guo Q
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.