These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 26346098)
1. Critical heat flux maxima during boiling crisis on textured surfaces. Dhillon NS; Buongiorno J; Varanasi KK Nat Commun; 2015 Sep; 6():8247. PubMed ID: 26346098 [TBL] [Abstract][Full Text] [Related]
2. Critical heat flux enhancement in pool boiling through increased rewetting on nanopillar array surfaces. Nguyen TB; Liu D; Kayes MI; Wang B; Rashin N; Leu PW; Tran T Sci Rep; 2018 Mar; 8(1):4815. PubMed ID: 29555913 [TBL] [Abstract][Full Text] [Related]
3. Two-Phase Particle Image Velocimetry Visualization of Rewetting Flow on the Micropillar Interfacial Surface. Nam HT; Cho HH; Lee S; Lee D ACS Appl Mater Interfaces; 2024 Jul; 16(26):34313-34325. PubMed ID: 38907697 [TBL] [Abstract][Full Text] [Related]
4. Criticality in the slowed-down boiling crisis at zero gravity. Charignon T; Lloveras P; Chatain D; Truskinovsky L; Vives E; Beysens D; Nikolayev VS Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053007. PubMed ID: 26066249 [TBL] [Abstract][Full Text] [Related]
5. A New Paradigm for Understanding and Enhancing the Critical Heat Flux (CHF) Limit. Fazeli A; Moghaddam S Sci Rep; 2017 Jul; 7(1):5184. PubMed ID: 28701688 [TBL] [Abstract][Full Text] [Related]
6. Heat Transfer Characteristics of Pool Boiling with Scalable Plasma-Sprayed Aluminum Coatings. Ranjan A; Priy A; Ahmad I; Pathak M; Khan MK; Keshri AK Langmuir; 2023 May; 39(18):6337-6354. PubMed ID: 37092979 [TBL] [Abstract][Full Text] [Related]
7. Boiling and quenching heat transfer advancement by nanoscale surface modification. Hu H; Xu C; Zhao Y; Ziegler KJ; Chung JN Sci Rep; 2017 Jul; 7(1):6117. PubMed ID: 28733647 [TBL] [Abstract][Full Text] [Related]
8. Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling. Song Y; Gong S; Vaartstra G; Wang EN ACS Appl Mater Interfaces; 2021 Mar; 13(10):12629-12635. PubMed ID: 33683095 [TBL] [Abstract][Full Text] [Related]
9. Aluminum Micropillar Surfaces with Hierarchical Micro- and Nanoscale Features for Enhancement of Boiling Heat Transfer Coefficient and Critical Heat Flux. Hadžić A; Može M; Zupančič M; Golobič I Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668161 [TBL] [Abstract][Full Text] [Related]
10. Pool boiling in deep and shallow vessels and the effect of surface nano-texture and self-rewetting. Sankaran A; Zhang W; Yarin AL Int J Heat Mass Transf; 2018 Dec; 127(Pt C):857-866. PubMed ID: 30467441 [TBL] [Abstract][Full Text] [Related]
11. Effect of foamability on pool boiling critical heat flux with nanofluids. Raza MQ; Kumar N; Raj R Soft Matter; 2019 Jul; 15(26):5308-5318. PubMed ID: 31225545 [TBL] [Abstract][Full Text] [Related]
13. Effect of Nanoparticle Size and Concentration on Pool Boiling Heat Transfer with TiO Hadžić A; Može M; Arhar K; Zupančič M; Golobič I Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957045 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of Pool Boiling Heat Transfer Using Aligned Silicon Nanowire Arrays. Shim DI; Choi G; Lee N; Kim T; Kim BS; Cho HH ACS Appl Mater Interfaces; 2017 May; 9(20):17595-17602. PubMed ID: 28470059 [TBL] [Abstract][Full Text] [Related]
15. Multimodal boiling dataset with synchronized acoustic, optical, and thermal measurements under steady-state and transient heat loads. Pandey H; Li C; Hu H Data Brief; 2024 Aug; 55():110582. PubMed ID: 39006353 [TBL] [Abstract][Full Text] [Related]
16. Corrosive effect on saturated pool boiling heat transfer characteristics of metallic surfaces with hierarchical micro/nano structures. Xu W; Tang L; Zhao N; Ouyang K; He X; Liu X Heliyon; 2024 Apr; 10(8):e29750. PubMed ID: 38681567 [TBL] [Abstract][Full Text] [Related]
17. Micro-pin-finned Surfaces with Fractal Treelike Hydrophilic Networks for Flow Boiling Enhancement. Yuan B; Liu L; Cui C; Fang J; Zhang Y; Wei J ACS Appl Mater Interfaces; 2021 Oct; 13(40):48189-48195. PubMed ID: 34606238 [TBL] [Abstract][Full Text] [Related]
18. Early Evaporation of Microlayer for Boiling Heat Transfer Enhancement. Zou A; Singh DP; Maroo SC Langmuir; 2016 Oct; 32(42):10808-10814. PubMed ID: 27709958 [TBL] [Abstract][Full Text] [Related]
19. Nanosecond Laser-Textured Copper Surfaces Hydrophobized with Self-Assembled Monolayers for Enhanced Pool Boiling Heat Transfer. Može M; Zupančič M; Steinbücher M; Golobič I; Gjerkeš H Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432318 [TBL] [Abstract][Full Text] [Related]
20. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan. Suzuki K; Kawamura H Ann N Y Acad Sci; 2004 Nov; 1027():182-95. PubMed ID: 15644356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]