BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26346187)

  • 1. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold.
    Mazzer AR; Perraud X; Halley J; O'Hara J; Bracewell DG
    J Chromatogr A; 2015 Oct; 1415():83-90. PubMed ID: 26346187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-immunospecific association of immunoglobulin G with chromatin during elution from protein A inflates host contamination, aggregate content, and antibody loss.
    Gagnon P; Nian R; Yang Y; Yang Q; Lim CL
    J Chromatogr A; 2015 Aug; 1408():151-60. PubMed ID: 26187767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification.
    Jin W; Xing Z; Song Y; Huang C; Xu X; Ghose S; Li ZJ
    MAbs; 2019; 11(8):1479-1491. PubMed ID: 31441367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein.
    Shukla AA; Gupta P; Han X
    J Chromatogr A; 2007 Nov; 1171(1-2):22-8. PubMed ID: 17920607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.
    Zheng S; Qiu D; Adams M; Li J; Mantri RV; Gandhi R
    AAPS PharmSciTech; 2017 Jan; 18(1):42-48. PubMed ID: 26340951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avoiding antibody aggregation during processing: establishing hold times.
    Joshi V; Shivach T; Kumar V; Yadav N; Rathore A
    Biotechnol J; 2014 Sep; 9(9):1195-205. PubMed ID: 24753430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of viruses using novel protein A wash buffers.
    Bolton GR; Selvitelli KR; Iliescu I; Cecchini DJ
    Biotechnol Prog; 2015; 31(2):406-13. PubMed ID: 25482293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetate- and Citrate-Specific Ion Effects on Unfolding and Temperature-Dependent Aggregation Rates of Anti-Streptavidin IgG1.
    Barnett GV; Razinkov VI; Kerwin BA; Hillsley A; Roberts CJ
    J Pharm Sci; 2016 Mar; 105(3):1066-73. PubMed ID: 26886346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody.
    Oyama H; Koga H; Tadokoro T; Maenaka K; Shiota A; Yokoyama M; Noda M; Torisu T; Uchiyama S
    J Pharm Sci; 2020 Jan; 109(1):308-315. PubMed ID: 31669120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior.
    Guo J; Zhang S; Carta G
    J Chromatogr A; 2014 Aug; 1356():117-28. PubMed ID: 25015241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process analytical technology in continuous processing: Model-based real time control of pH between capture chromatography and viral inactivation for monoclonal antibody production.
    Thakur G; Ghumade P; Rathore AS
    J Chromatogr A; 2021 Nov; 1658():462614. PubMed ID: 34656843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choosing the right protein A affinity chromatography media can remove aggregates efficiently.
    Yada T; Nonaka K; Yabuta M; Yoshimoto N; Yamamoto S
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27660109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated system for temperature-controlled fast protein liquid chromatography. III. Continuous downstream processing of monoclonal antibodies.
    Ketterer B; Moore-Kelly C; Thomas ORT; Franzreb M
    J Chromatogr A; 2020 Jan; 1609():460429. PubMed ID: 31431354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoglobulin G elution in protein A chromatography employing the method of chromatofocusing for reducing the co-elution of impurities.
    Pinto ND; Uplekar SD; Moreira AR; Rao G; Frey DD
    Biotechnol Bioeng; 2017 Jan; 114(1):154-162. PubMed ID: 27425244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography.
    Gagnon P; Nian R; Leong D; Hoi A
    J Chromatogr A; 2015 May; 1395():136-42. PubMed ID: 25882588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-shift stress on antibodies.
    Imamura H; Honda S
    Methods Enzymol; 2019; 622():329-345. PubMed ID: 31155060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine as an eluent for automated on-line Protein A/size exclusion chromatographic analysis of monoclonal antibody aggregates in cell culture.
    Wang S; Raghani A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():115-20. PubMed ID: 24333642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of mild pH elution protein A resins for antibodies and Fc-fusion proteins.
    Wang FAS; Fan Y; Chung WK; Dutta A; Fiedler E; Haupts U; Peyser J; Kuriyel R
    J Chromatogr A; 2024 Jan; 1713():464523. PubMed ID: 38041974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions.
    Nicoud L; Jagielski J; Pfister D; Lazzari S; Massant J; Lattuada M; Morbidelli M
    J Phys Chem B; 2016 Apr; 120(13):3267-80. PubMed ID: 27007829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography.
    Ejima D; Yumioka R; Tsumoto K; Arakawa T
    Anal Biochem; 2005 Oct; 345(2):250-7. PubMed ID: 16125126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.