These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26346274)

  • 41. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin.
    Lazarou M; Jin SM; Kane LA; Youle RJ
    Dev Cell; 2012 Feb; 22(2):320-33. PubMed ID: 22280891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity.
    Kumar A; Chaugule VK; Condos TEC; Barber KR; Johnson C; Toth R; Sundaramoorthy R; Knebel A; Shaw GS; Walden H
    Nat Struct Mol Biol; 2017 May; 24(5):475-483. PubMed ID: 28414322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring PARKIN RBR Ubiquitin Ligase Activation States with UbFluor.
    Foote PK; Statsyuk AV
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e45. PubMed ID: 30063295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of Parkin E3 ubiquitin ligase activity.
    Walden H; Martinez-Torres RJ
    Cell Mol Life Sci; 2012 Sep; 69(18):3053-67. PubMed ID: 22527713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility.
    Wang X; Winter D; Ashrafi G; Schlehe J; Wong YL; Selkoe D; Rice S; Steen J; LaVoie MJ; Schwarz TL
    Cell; 2011 Nov; 147(4):893-906. PubMed ID: 22078885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.
    Aguirre JD; Dunkerley KM; Mercier P; Shaw GS
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):298-303. PubMed ID: 28007983
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PINK1/Parkin direct mitochondria to autophagy.
    Vives-Bauza C; de Vries RL; Tocilescu M; Przedborski S
    Autophagy; 2010 Feb; 6(2):315-6. PubMed ID: 20200476
    [No Abstract]   [Full Text] [Related]  

  • 48. A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria.
    Scott HL; Buckner N; Fernandez-Albert F; Pedone E; Postiglione L; Shi G; Allen N; Wong LF; Magini L; Marucci L; O'Sullivan GA; Cole S; Powell J; Maycox P; Uney JB
    J Biol Chem; 2020 Mar; 295(10):3285-3300. PubMed ID: 31911436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PINK1 points Parkin to mitochondria.
    Vives-Bauza C; Przedborski S
    Autophagy; 2010 Jul; 6(5):674-5. PubMed ID: 20484984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The lysosomal membrane protein LAMP-2 is dispensable for PINK1/Parkin-mediated mitophagy.
    Liu X; Liao X; Rao X; Wang B; Zhang J; Xu G; Jiang X; Qin X; Chen C; Zou Z
    FEBS Lett; 2020 Mar; 594(5):823-840. PubMed ID: 31693752
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons.
    Rakovic A; Shurkewitsch K; Seibler P; Grünewald A; Zanon A; Hagenah J; Krainc D; Klein C
    J Biol Chem; 2013 Jan; 288(4):2223-37. PubMed ID: 23212910
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease.
    Shiba-Fukushima K; Ishikawa KI; Inoshita T; Izawa N; Takanashi M; Sato S; Onodera O; Akamatsu W; Okano H; Imai Y; Hattori N
    Hum Mol Genet; 2017 Aug; 26(16):3172-3185. PubMed ID: 28541509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitochondrial quality control by the Pink1/Parkin system.
    Rüb C; Wilkening A; Voos W
    Cell Tissue Res; 2017 Jan; 367(1):111-123. PubMed ID: 27586587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease.
    Haskin J; Szargel R; Shani V; Mekies LN; Rott R; Lim GG; Lim KL; Bandopadhyay R; Wolosker H; Engelender S
    Hum Mol Genet; 2013 May; 22(10):2083-96. PubMed ID: 23393160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PINK1 and Parkin: team players in stress-induced mitophagy.
    Bader V; Winklhofer KF
    Biol Chem; 2020 May; 401(6-7):891-899. PubMed ID: 32297878
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway.
    Bowling JL; Skolfield MC; Riley WA; Nolin AP; Wolf LC; Nelson DE
    BMC Mol Cell Biol; 2019 Aug; 20(1):33. PubMed ID: 31412778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondria get a Parkin' ticket.
    Wild P; Dikic I
    Nat Cell Biol; 2010 Feb; 12(2):104-6. PubMed ID: 20118996
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bit-by-bit autophagic removal of parkin-labelled mitochondria.
    Yang JY; Yang WY
    Nat Commun; 2013; 4():2428. PubMed ID: 24013556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease.
    Kazlauskaite A; Muqit MM
    FEBS J; 2015 Jan; 282(2):215-23. PubMed ID: 25345844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy.
    Lazarou M; Sliter DA; Kane LA; Sarraf SA; Wang C; Burman JL; Sideris DP; Fogel AI; Youle RJ
    Nature; 2015 Aug; 524(7565):309-314. PubMed ID: 26266977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.