These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26346301)

  • 1. Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling.
    Huang YM; Huber G; McCammon JA
    Protein Sci; 2015 Nov; 24(11):1884-9. PubMed ID: 26346301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of phosphodiesterase-induced cAMP dissociation from protein kinase A: capturing transient ternary complexes by HDXMS.
    Krishnamurthy S; Moorthy BS; Liqin L; Anand GS
    Biochim Biophys Acta; 2013 Jun; 1834(6):1215-21. PubMed ID: 23501673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical analysis of second messenger compartmentalization.
    Chen W; Levine H; Rappel WJ
    Phys Biol; 2008 Dec; 5(4):046006. PubMed ID: 19075354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease.
    Cheng J; Grande JP
    Exp Biol Med (Maywood); 2007 Jan; 232(1):38-51. PubMed ID: 17202584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Mapping of cAMP Signaling at the Nanometer Scale.
    Bock A; Annibale P; Konrad C; Hannawacker A; Anton SE; Maiellaro I; Zabel U; Sivaramakrishnan S; Falcke M; Lohse MJ
    Cell; 2020 Sep; 182(6):1519-1530.e17. PubMed ID: 32846156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An update view on the substrate recognition mechanism of phosphodiesterases: a computational study of PDE10 and PDE4 bound with cyclic nucleotides.
    Lau JK; Cheng YK
    Biopolymers; 2012 Nov; 97(11):910-22. PubMed ID: 22899366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cAMP-phosphodiesterase activity in bovine seminal plasma.
    Bergeron A; Aragon JP; Guillemette C; Hébert A; Sullivan R; Blondin P; Richard FJ
    Andrology; 2016 Nov; 4(6):1123-1130. PubMed ID: 27565610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphodiesterase Diversity and Signal Processing Within cAMP Signaling Networks.
    Neves-Zaph SR
    Adv Neurobiol; 2017; 17():3-14. PubMed ID: 28956327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channeling of cAMP in PDE-PKA Complexes Promotes Signal Adaptation.
    Tulsian NK; Krishnamurthy S; Anand GS
    Biophys J; 2017 Jun; 112(12):2552-2566. PubMed ID: 28636912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10.
    Wang H; Robinson H; Ke H
    J Mol Biol; 2007 Aug; 371(2):302-7. PubMed ID: 17582435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reshaping cAMP nanodomains through targeted disruption of compartmentalised phosphodiesterase signalosomes.
    Blair CM; Baillie GS
    Biochem Soc Trans; 2019 Oct; 47(5):1405-1414. PubMed ID: 31506329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A substrate selectivity and inhibitor design lesson from the PDE10-cAMP crystal structure: a computational study.
    Lau JK; Li XB; Cheng YK
    J Phys Chem B; 2010 Apr; 114(15):5154-60. PubMed ID: 20349929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid protein kinase A--mediated activation of cyclic AMP-phosphodiesterase by parathyroid hormone in UMR-106 osteoblast-like cells.
    Ahlström M; Lamberg-Allardt C
    J Bone Miner Res; 1997 Feb; 12(2):172-8. PubMed ID: 9041048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases.
    Vinogradova TM; Sirenko S; Lyashkov AE; Younes A; Li Y; Zhu W; Yang D; Ruknudin AM; Spurgeon H; Lakatta EG
    Circ Res; 2008 Apr; 102(7):761-9. PubMed ID: 18276917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and mathematical analysis of cAMP nanodomains.
    Lohse C; Bock A; Maiellaro I; Hannawacker A; Schad LR; Lohse MJ; Bauer WR
    PLoS One; 2017; 12(4):e0174856. PubMed ID: 28406920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of plasma membranes with influenza virus. VII. Effect on 3',5'-cyclic adenosine monophosphate phosphodiesterase activity.
    Krizanová O; Lacinová D; Knopp J
    Acta Virol; 1977 Mar; 21(2):97-103. PubMed ID: 17292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases.
    Schmidt M; Cattani-Cavalieri I; Nuñez FJ; Ostrom RS
    Curr Opin Pharmacol; 2020 Apr; 51():34-42. PubMed ID: 32622335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic nucleotide-mediated regulation of vascular smooth muscle cell cyclic nucleotide phosphodiesterase activity. Selective effect of cyclic AMP.
    Maurice DH
    Cell Biochem Biophys; 1998; 29(1-2):35-47. PubMed ID: 9631237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: topology of the catalytic sites and comparison with other cyclic AMP-binding proteins.
    Butt E; Beltman J; Becker DE; Jensen GS; Rybalkin SD; Jastorff B; Beavo JA
    Mol Pharmacol; 1995 Feb; 47(2):340-7. PubMed ID: 7870042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity.
    Matthiesen K; Nielsen J
    Biochem J; 2009 Oct; 423(3):401-9. PubMed ID: 19689430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.