These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 26346583)
1. CoxNi100-x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption. Wang H; Dai YY; Geng DY; Ma S; Li D; An J; He J; Liu W; Zhang ZD Nanoscale; 2015 Nov; 7(41):17312-9. PubMed ID: 26346583 [TBL] [Abstract][Full Text] [Related]
2. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness. Li D; Liao H; Kikuchi H; Liu T ACS Appl Mater Interfaces; 2017 Dec; 9(51):44704-44714. PubMed ID: 29199817 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Zhao B; Shao G; Fan B; Zhao W; Zhang R Phys Chem Chem Phys; 2015 Jan; 17(4):2531-9. PubMed ID: 25494450 [TBL] [Abstract][Full Text] [Related]
4. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361 [TBL] [Abstract][Full Text] [Related]
5. The enhanced microwave absorption property of CoFe(2)O(4) nanoparticles coated with a Co(3)Fe(7)-Co nanoshell by thermal reduction. Xi L; Wang Z; Zuo Y; Shi X Nanotechnology; 2011 Jan; 22(4):045707. PubMed ID: 21169659 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Microwave Absorption Bandwidth in Graphene-Encapsulated Iron Nanoparticles with Core-Shell Structure. Zhang D; Deng Y; Han C; Zhu H; Yan C; Zhang H Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32408500 [TBL] [Abstract][Full Text] [Related]
7. Quinary High-Entropy-Alloy@Graphite Nanocapsules with Tunable Interfacial Impedance Matching for Optimizing Microwave Absorption. Li Y; Liao Y; Ji L; Hu C; Zhang Z; Zhang Z; Zhao R; Rong H; Qin G; Zhang X Small; 2022 Jan; 18(4):e2107265. PubMed ID: 34908242 [TBL] [Abstract][Full Text] [Related]
8. Bead-like cobalt nanoparticles coated with dielectric SiO Wang B; Liao H; Xie X; Wu Q; Liu T J Colloid Interface Sci; 2020 Oct; 578():346-357. PubMed ID: 32535417 [TBL] [Abstract][Full Text] [Related]
9. Microwave absorption properties of core double-shell FeCo/C/BaTiO₃ nanocomposites. Jiang J; Li D; Geng D; An J; He J; Liu W; Zhang Z Nanoscale; 2014 Apr; 6(8):3967-71. PubMed ID: 24287893 [TBL] [Abstract][Full Text] [Related]
10. Morphology-Control Synthesis of a Core-Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities. Zhao B; Zhao W; Shao G; Fan B; Zhang R ACS Appl Mater Interfaces; 2015 Jun; 7(23):12951-60. PubMed ID: 26018739 [TBL] [Abstract][Full Text] [Related]
11. Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance. Wang K; Chen Y; Tian R; Li H; Zhou Y; Duan H; Liu H ACS Appl Mater Interfaces; 2018 Apr; 10(13):11333-11342. PubMed ID: 29533582 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite. Zhao B; Shao G; Fan B; Zhao W; Zhang R Phys Chem Chem Phys; 2015 Feb; 17(8):6044-52. PubMed ID: 25639203 [TBL] [Abstract][Full Text] [Related]
13. Large-scale preparation of Co nanoparticles as an additive in carbon fiber for microwave absorption enhancement in C band. Zhu YX; Wang SF; Zhang YS; Wu ZG; Zhong B; Li DR; Wang FY; Feng JJ; Tang J; Zhuo RF; Yan PX Sci Rep; 2021 Jan; 11(1):2171. PubMed ID: 33500514 [TBL] [Abstract][Full Text] [Related]
14. Yolk-shell structured Co@SiO Wang B; Wu Q; Fu Y; Liu T J Colloid Interface Sci; 2021 Jul; 594():342-351. PubMed ID: 33773386 [TBL] [Abstract][Full Text] [Related]
15. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Yan L; Wang J; Han X; Ren Y; Liu Q; Li F Nanotechnology; 2010 Mar; 21(9):095708. PubMed ID: 20139492 [TBL] [Abstract][Full Text] [Related]
16. Microwave-Absorption Properties of Three Kinds of Structured Cu/C Composites. Jiang L; Wang Z; Li D; Geng D; Wang Y; An J; He J; Liu W; Zhang Z J Nanosci Nanotechnol; 2016 Jun; 16(6):5646-52. PubMed ID: 27427610 [TBL] [Abstract][Full Text] [Related]
17. Yolk-Shell Ni@SnO Zhao B; Guo X; Zhao W; Deng J; Shao G; Fan B; Bai Z; Zhang R ACS Appl Mater Interfaces; 2016 Oct; 8(42):28917-28925. PubMed ID: 27700044 [TBL] [Abstract][Full Text] [Related]
18. A facile coprecipitation method to synthesize Fe Meng R; Zhang T; Yu H; Zhang J; Wen G; Huang X; Huang L; Xia L; Zhong B Nanotechnology; 2019 May; 30(18):185704. PubMed ID: 30650393 [TBL] [Abstract][Full Text] [Related]
19. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Liu T; Pang Y; Zhu M; Kobayashi S Nanoscale; 2014 Feb; 6(4):2447-54. PubMed ID: 24452196 [TBL] [Abstract][Full Text] [Related]
20. Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. Zhao B; Fan B; Shao G; Zhao W; Zhang R ACS Appl Mater Interfaces; 2015 Aug; 7(33):18815-23. PubMed ID: 26259116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]