BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26347149)

  • 1. Feasibility of up-regulating CD4(+)CD25(+) Tregs by IFN-γ in myasthenia gravis patients.
    Huang S; Wang W; Chi L
    BMC Neurol; 2015 Sep; 15():163. PubMed ID: 26347149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of a CD4
    Jafarinia M; Mehdipour F; Hosseini SV; Ghahramani L; Hosseinzadeh M; Ghaderi A
    Tumour Biol; 2016 Nov; 37(11):14659-14666. PubMed ID: 27619682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis.
    Zhang Y; Wang HB; Chi LJ; Wang WZ
    Immunol Lett; 2009 Jan; 122(1):52-7. PubMed ID: 19111574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low expressions of PD-L1 and CTLA-4 by induced CD4
    Zhao L; Zhou X; Zhou X; Wang H; Gu L; Ke Y; Zhang M; Ji X; Yang X
    Cytokine; 2020 Sep; 133():155119. PubMed ID: 32535334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective response of CD4(+) T cells to retinoic acid and TGFβ in systemic lupus erythematosus.
    Sobel ES; Brusko TM; Butfiloski EJ; Hou W; Li S; Cuda CM; Abid AN; Reeves WH; Morel L
    Arthritis Res Ther; 2011 Jun; 13(3):R106. PubMed ID: 21708033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Depressive effect of cigarette smoke extracts on dendritic cells inducing differentiation of CD4+T cells into CD4+CD25+Foxp3+ Tregs].
    Liang Y; Zhou G; Zhang L; Liu J; Zhong X
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2016 Jan; 32(1):15-9. PubMed ID: 26728371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of CD4+ CD25+ T cells in the mechanism of myasthenia gravis in children and adults].
    He XT; Liu WB; Feng HY; Zhang Y; Huang X; Meng R; Wu CY
    Zhonghua Yi Xue Za Zhi; 2008 Dec; 88(45):3189-91. PubMed ID: 19171090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.
    Wang DW; Zhou RB; Yao YM; Zhu XM; Yin YM; Zhao GJ; Dong N; Sheng ZY
    J Pharmacol Exp Ther; 2010 Dec; 335(3):553-61. PubMed ID: 20843956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOXP3 demethylation as a means of identifying quantitative defects in regulatory T cells in acute coronary syndrome.
    Lü CX; Xu RD; Cao M; Wang G; Yan FQ; Shang SS; Wu XF; Ruan L; Quan XQ; Zhang CT
    Atherosclerosis; 2013 Jul; 229(1):263-70. PubMed ID: 23735638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased suppression of CD8
    Giri PS; Dwivedi M; Begum R
    Exp Dermatol; 2020 Aug; 29(8):759-775. PubMed ID: 32682346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease?
    Hmida NB; Ben Ahmed M; Moussa A; Rejeb MB; Said Y; Kourda N; Meresse B; Abdeladhim M; Louzir H; Cerf-Bensussan N
    Am J Gastroenterol; 2012 Apr; 107(4):604-11. PubMed ID: 22108452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD4+CD25+Foxp3+IFN-γ+ human induced T regulatory cells are induced by interferon-γ and suppress alloresponses nonspecifically.
    Daniel V; Sadeghi M; Wang H; Opelz G
    Hum Immunol; 2011 Sep; 72(9):699-707. PubMed ID: 21664396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical implication of peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients.
    Masuda M; Matsumoto M; Tanaka S; Nakajima K; Yamada N; Ido N; Ohtsuka T; Nishida M; Hirano T; Utsumi H
    J Neuroimmunol; 2010 Aug; 225(1-2):123-31. PubMed ID: 20472307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A possible role of CD4+CD25+ T cells as well as transcription factor Foxp3 in the dysregulation of allergic rhinitis.
    Xu G; Mou Z; Jiang H; Cheng L; Shi J; Xu R; Oh Y; Li H
    Laryngoscope; 2007 May; 117(5):876-80. PubMed ID: 17473687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of regulatory T cells and FoxP3 gene expression in the aging process and its relationship with lung tumors in humans and mice.
    Pan XD; Mao YQ; Zhu LJ; Li J; Xie Y; Wang L; Zhang GB
    Chin Med J (Engl); 2012 Jun; 125(11):2004-11. PubMed ID: 22884069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of FoxP3-positive and -negative CD4(+) CD25(+) T cells in Graves' ophthalmopathy.
    Matsuzawa K; Izawa S; Okura T; Fujii S; Matsumoto K; Shoji K; Nakamura R; Sumi K; Fujioka Y; Yoshida A; Shigemasa C; Kato M; Yamamoto K; Taniguchi S
    Endocr J; 2016 Aug; 63(8):755-64. PubMed ID: 27349268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HSP70 enhances immunosuppressive function of CD4(+)CD25(+)FoxP3(+) T regulatory cells and cytotoxicity in CD4(+)CD25(-) T cells.
    Wachstein J; Tischer S; Figueiredo C; Limbourg A; Falk C; Immenschuh S; Blasczyk R; Eiz-Vesper B
    PLoS One; 2012; 7(12):e51747. PubMed ID: 23300563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allergen-specific IL-10-secreting type I T regulatory cells, but not CD4(+)CD25(+)Foxp3(+) T cells, are decreased in peripheral blood of patients with persistent allergic rhinitis.
    Han D; Wang C; Lou W; Gu Y; Wang Y; Zhang L
    Clin Immunol; 2010 Aug; 136(2):292-301. PubMed ID: 20403730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Isolation and function analysis of rat CD4+ CD25+ regulatory T cells].
    Lu L; Zhang F; Wang XH; Pu LY; Yao AH; Yu Y
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2006 Jul; 22(4):417-9. PubMed ID: 16805996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of peripheral CD4(+)CD25(-) T cells to CD4(+)CD25(+) regulatory T cells by IFN-gamma in patients with Guillain-Barré syndrome.
    Huang S; Li L; Liang S; Wang W
    J Neuroimmunol; 2009 Dec; 217(1-2):80-4. PubMed ID: 19853929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.